quack/src/GW/qsGGW.f90

453 lines
15 KiB
Fortran

subroutine qsGGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,dTDA,doppBSE, &
eta,regularize,nNuc,ZNuc,rNuc,ENuc,nBas,nBas2,nC,nO,nV,nR,nS,EGHF,Ov,Or,T,V,Hc,ERI_AO, &
ERI_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF)
! Generalized version of quasiparticle self-consistent GW
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dotest
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: dophBSE
logical,intent(in) :: dophBSE2
logical,intent(in) :: TDA_W
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: doppBSE
double precision,intent(in) :: eta
logical,intent(in) :: regularize
integer,intent(in) :: nNuc
double precision,intent(in) :: ZNuc(nNuc)
double precision,intent(in) :: rNuc(nNuc,ncart)
double precision,intent(in) :: ENuc
integer,intent(in) :: nBas
integer,intent(in) :: nBas2
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: EGHF
double precision,intent(in) :: eHF(nBas2)
double precision,intent(in) :: cHF(nBas2,nBas2)
double precision,intent(in) :: PHF(nBas2,nBas2)
double precision,intent(in) :: Ov(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: Or(nBas,nBas)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
double precision,intent(inout):: ERI_MO(nBas2,nBas2,nBas2,nBas2)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
double precision,intent(inout):: dipole_int_MO(nBas2,nBas2,ncart)
! Local variables
integer :: nSCF
integer :: nBasSq
integer :: nBas2Sq
integer :: ispin
integer :: ixyz
integer :: n_diis
double precision :: ET,ETaa,ETbb
double precision :: EV,EVaa,EVbb
double precision :: EJ,EJaaaa,EJaabb,EJbbaa,EJbbbb
double precision :: EK,EKaaaa,EKabba,EKbaab,EKbbbb
double precision :: EqsGW
double precision :: EcRPA
double precision :: EcBSE
double precision :: EcGM
double precision :: Conv
double precision :: rcond
double precision,external :: trace_matrix
double precision :: dipole(ncart)
logical :: dRPA = .true.
logical :: print_W = .true.
double precision,allocatable :: err_diis(:,:)
double precision,allocatable :: F_diis(:,:)
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
double precision,allocatable :: rho(:,:,:)
double precision,allocatable :: Ca(:,:),Cb(:,:)
double precision,allocatable :: ERI_tmp(:,:,:,:)
double precision,allocatable :: Jaa(:,:),Jbb(:,:)
double precision,allocatable :: Kaa(:,:),Kab(:,:),Kba(:,:),Kbb(:,:)
double precision,allocatable :: Faa(:,:),Fab(:,:),Fba(:,:),Fbb(:,:)
double precision,allocatable :: Paa(:,:),Pab(:,:),Pba(:,:),Pbb(:,:)
double precision,allocatable :: C(:,:)
double precision,allocatable :: Cp(:,:)
double precision,allocatable :: eGW(:)
double precision,allocatable :: P(:,:)
double precision,allocatable :: F(:,:)
double precision,allocatable :: H(:,:)
double precision,allocatable :: S(:,:)
double precision,allocatable :: X(:,:)
double precision,allocatable :: Fp(:,:)
double precision,allocatable :: SigC(:,:)
double precision,allocatable :: SigCp(:,:)
double precision,allocatable :: Z(:)
double precision,allocatable :: err(:,:)
! Hello world
write(*,*)
write(*,*)'********************************'
write(*,*)'* Generalized qsGW Calculation *'
write(*,*)'********************************'
write(*,*)
! Warning
write(*,*) '!! ERIs in MO basis will be overwritten in qsGW !!'
write(*,*)
! Stuff
nBasSq = nBas*nBas
nBas2Sq = nBas2*nBas2
! TDA for W
if(TDA_W) then
write(*,*) 'Tamm-Dancoff approximation for dynamic screening!'
write(*,*)
end if
! TDA
if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*)
end if
! Memory allocation
allocate(Ca(nBas,nBas2),Cb(nBas,nBas2),P(nBas2,nBas2),Jaa(nBas,nBas),Jbb(nBas,nBas), &
Kaa(nBas,nBas),Kab(nBas,nBas),Kba(nBas,nBas),Kbb(nBas,nBas), &
Faa(nBas,nBas),Fab(nBas,nBas),Fba(nBas,nBas),Fbb(nBas,nBas), &
Paa(nBas,nBas),Pab(nBas,nBas),Pba(nBas,nBas),Pbb(nBas,nBas), &
F(nBas2,nBas2),Fp(nBas2,nBas2),C(nBas2,nBas2),Cp(nBas2,nBas2), &
H(nBas2,nBas2),S(nBas2,nBas2),X(nBas2,nBas2),err(nBas2,nBas2), &
err_diis(nBas2Sq,max_diis),F_diis(nBas2Sq,max_diis), &
eGW(nBas2),SigC(nBas2,nBas2),SigCp(nBas,nBas),Z(nBas2),Aph(nS,nS),Bph(nS,nS), &
Om(nS),XpY(nS,nS),XmY(nS,nS),rho(nBas2,nBas2,nS))
! Initialization
nSCF = -1
n_diis = 0
ispin = 3
Conv = 1d0
P(:,:) = PHF(:,:)
eGW(:) = eHF(:)
c(:,:) = cHF(:,:)
F_diis(:,:) = 0d0
err_diis(:,:) = 0d0
rcond = 0d0
! Construct super overlap matrix
S( : , : ) = 0d0
S( 1:nBas , 1:nBas ) = Ov(1:nBas,1:nBas)
S(nBas+1:nBas2,nBas+1:nBas2) = Ov(1:nBas,1:nBas)
! Construct super orthogonalization matrix
X( : , : ) = 0d0
X( 1:nBas , 1:nBas ) = Or(1:nBas,1:nBas)
X(nBas+1:nBas2,nBas+1:nBas2) = Or(1:nBas,1:nBas)
! Construct super orthogonalization matrix
H( : , : ) = 0d0
H( 1:nBas , 1:nBas ) = Hc(1:nBas,1:nBas)
H(nBas+1:nBas2,nBas+1:nBas2) = Hc(1:nBas,1:nBas)
! Construct super density matrix
P(:,:) = matmul(C(:,1:nO),transpose(C(:,1:nO)))
Paa(:,:) = P( 1:nBas , 1:nBas )
Pab(:,:) = P( 1:nBas ,nBas+1:nBas2)
Pba(:,:) = P(nBas+1:nBas2, 1:nBas )
Pbb(:,:) = P(nBas+1:nBas2,nBas+1:nBas2)
!------------------------------------------------------------------------
! Main loop
!------------------------------------------------------------------------
do while(Conv > thresh .and. nSCF <= maxSCF)
! Increment
nSCF = nSCF + 1
! Buid Hartree matrix
call Hartree_matrix_AO_basis(nBas,Paa,ERI_AO,Jaa)
call Hartree_matrix_AO_basis(nBas,Pbb,ERI_AO,Jbb)
! Compute exchange part of the self-energy
call exchange_matrix_AO_basis(nBas,Paa,ERI_AO,Kaa)
call exchange_matrix_AO_basis(nBas,Pba,ERI_AO,Kab)
call exchange_matrix_AO_basis(nBas,Pab,ERI_AO,Kba)
call exchange_matrix_AO_basis(nBas,Pbb,ERI_AO,Kbb)
! Build individual Fock matrices
Faa(:,:) = Hc(:,:) + Jaa(:,:) + Jbb(:,:) + Kaa(:,:)
Fab(:,:) = + Kab(:,:)
Fba(:,:) = + Kba(:,:)
Fbb(:,:) = Hc(:,:) + Jbb(:,:) + Jaa(:,:) + Kbb(:,:)
! Build super Fock matrix
F( 1:nBas , 1:nBas ) = Faa(1:nBas,1:nBas)
F( 1:nBas ,nBas+1:nBas2) = Fab(1:nBas,1:nBas)
F(nBas+1:nBas2, 1:nBas ) = Fba(1:nBas,1:nBas)
F(nBas+1:nBas2,nBas+1:nBas2) = Fbb(1:nBas,1:nBas)
! AO to MO transformation of two-electron integrals
allocate(ERI_tmp(nBas2,nBas2,nBas2,nBas2))
Ca(:,:) = C(1:nBas,1:nBas2)
Cb(:,:) = C(nBas+1:nBas2,1:nBas2)
do ixyz=1,ncart
call AOtoMO_GHF(nBas,nBas2,Ca,Cb,dipole_int_AO(:,:,ixyz),dipole_int_MO(:,:,ixyz))
end do
call AOtoMO_ERI_GHF(nBas,nBas2,Ca,Ca,ERI_AO,ERI_tmp)
ERI_MO(:,:,:,:) = ERI_tmp(:,:,:,:)
call AOtoMO_ERI_GHF(nBas,nBas2,Ca,Cb,ERI_AO,ERI_tmp)
ERI_MO(:,:,:,:) = ERI_MO(:,:,:,:) + ERI_tmp(:,:,:,:)
call AOtoMO_ERI_GHF(nBas,nBas2,Cb,Ca,ERI_AO,ERI_tmp)
ERI_MO(:,:,:,:) = ERI_MO(:,:,:,:) + ERI_tmp(:,:,:,:)
call AOtoMO_ERI_GHF(nBas,nBas2,Cb,Cb,ERI_AO,ERI_tmp)
ERI_MO(:,:,:,:) = ERI_MO(:,:,:,:) + ERI_tmp(:,:,:,:)
deallocate(ERI_tmp)
! Compute linear response
call phLR_A(ispin,dRPA,nBas2,nC,nO,nV,nR,nS,1d0,eGW,ERI_MO,Aph)
if(.not.TDA_W) call phLR_B(ispin,dRPA,nBas2,nC,nO,nV,nR,nS,1d0,ERI_MO,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
if(print_W) call print_excitation_energies('phRPA@GW@GHF','spinorbital',nS,Om)
! Compute correlation part of the self-energy
call GW_excitation_density(nBas2,nC,nO,nR,nS,ERI_MO,XpY,rho)
if(regularize) call GW_regularization(nBas2,nC,nO,nV,nR,nS,eGW,Om,rho)
call GGW_self_energy(eta,nBas2,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
! Make correlation self-energy Hermitian and transform it back to AO basis
SigC = 0.5d0*(SigC + transpose(SigC))
call MOtoAO_GHF(nBas2,nBas,S,Ca,Cb,SigC,SigCp)
! ... and add self-energy
F(:,:) = F(:,:) + SigCp(:,:)
! Compute commutator and convergence criteria
err = matmul(F,matmul(P,S)) - matmul(matmul(S,P),F)
if(nSCF > 1) Conv = maxval(abs(err))
! DIIS extrapolation
if(max_diis > 1) then
n_diis = min(n_diis+1,max_diis)
call DIIS_extrapolation(rcond,nBas2Sq,nBas2Sq,n_diis,err_diis,F_diis,err,F)
end if
! Transform Fock matrix in orthogonal basis
Fp(:,:) = matmul(transpose(X),matmul(F,X))
! Diagonalize Fock matrix to get eigenvectors and eigenvalues
Cp(:,:) = Fp(:,:)
call diagonalize_matrix(nBas2,Cp,eGW)
! Back-transform eigenvectors in non-orthogonal basis
C(:,:) = matmul(X,Cp)
call AOtoMO_GHF(nBas,nBas2,Ca,Cb,SigCp,SigC)
! Form super density matrix
P(:,:) = matmul(C(:,1:nO),transpose(C(:,1:nO)))
! Compute individual density matrices
Paa(:,:) = P( 1:nBas , 1:nBas )
Pab(:,:) = P( 1:nBas ,nBas+1:nBas2)
Pba(:,:) = P(nBas+1:nBas2, 1:nBas )
Pbb(:,:) = P(nBas+1:nBas2,nBas+1:nBas2)
!------------------------------------------------------------------------
! Compute total energy
!------------------------------------------------------------------------
! Kinetic energy
ETaa = trace_matrix(nBas,matmul(Paa,T))
ETbb = trace_matrix(nBas,matmul(Pbb,T))
ET = ETaa + ETbb
! Potential energy
EVaa = trace_matrix(nBas,matmul(Paa,V))
EVbb = trace_matrix(nBas,matmul(Pbb,V))
EV = EVaa + EVbb
! Hartree energy
EJaaaa = 0.5d0*trace_matrix(nBas,matmul(Paa,Jaa))
EJaabb = 0.5d0*trace_matrix(nBas,matmul(Paa,Jbb))
EJbbaa = 0.5d0*trace_matrix(nBas,matmul(Pbb,Jaa))
EJbbbb = 0.5d0*trace_matrix(nBas,matmul(Pbb,Jbb))
EJ = EJaaaa + EJaabb + EJbbaa + EJbbbb
! Exchange energy
EKaaaa = 0.5d0*trace_matrix(nBas,matmul(Paa,Kaa))
EKabba = 0.5d0*trace_matrix(nBas,matmul(Pab,Kba))
EKbaab = 0.5d0*trace_matrix(nBas,matmul(Pba,Kab))
EKbbbb = 0.5d0*trace_matrix(nBas,matmul(Pbb,Kbb))
EK = EKaaaa + EKabba + EKbaab + EKbbbb
! Total energy
EqsGW = ET + EV + EJ + EK
! Print results
call dipole_moment(nBas2,P,nNuc,ZNuc,rNuc,dipole_int_AO,dipole)
call print_qsGGW(nBas,nBas2,nO,nSCF,Conv,thresh,eHF,eGW,c,Ov,SigC,Z,ENuc,ET,EV,EJ,EK,EcGM,EcRPA,EqsGW,dipole)
end do
!------------------------------------------------------------------------
! End main loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF+1) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
! Perform BSE calculation
if(dophBSE) then
call GGW_phBSE(dophBSE2,TDA_W,TDA,dBSE,dTDA,eta,nBas2,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO,eGW,eGW,EcBSE)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@GHF correlation energy = ',EcBSE,' au'
write(*,'(2X,A50,F20.10,A4)') 'Tr@BSE@qsGW@GHF total energy = ',ENuc + EqsGW + EcBSE,' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
! if(doACFDT) then
! write(*,*) '------------------------------------------------------'
! write(*,*) 'Adiabatic connection version of BSE correlation energy'
! write(*,*) '------------------------------------------------------'
! write(*,*)
! if(doXBS) then
! write(*,*) '*** scaled screening version (XBS) ***'
! write(*,*)
! end if
! call GW_phACFDT(exchange_kernel,doXBS,.true.,TDA_W,TDA,dophBSE,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,eGW,eGW,EcBSE)
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy (singlet) =',EcBSE(1)
! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy (triplet) =',EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy =',EcBSE(1) + EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW total energy =',ENuc + EqsGW + EcBSE(1) + EcBSE(2)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
end if
! if(doppBSE) then
!
! call GW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO,eHF,eGW,EcBSE)
!
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10)') 'Tr@ppBSE@qsGW correlation energy (singlet) =',EcBSE(1)
! write(*,'(2X,A50,F20.10)') 'Tr@ppBSE@qsGW correlation energy (triplet) =',3d0*EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'Tr@ppBSE@qsGW correlation energy =',EcBSE(1) + 3d0*EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'Tr@ppBSE@qsGW total energy =',ENuc + EGHF + EcBSE(1) + 3d0*EcBSE(2)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
! Testing zone
if(dotest) then
call dump_test_value('G','qsGW correlation energy',EcRPA)
call dump_test_value('G','qsGW HOMO energy',eGW(nO))
call dump_test_value('G','qsGW LUMO energy',eGW(nO+1))
end if
end subroutine