quack/src/GF/GF2_ppBSE2_dynamic_kernel_C...

149 lines
5.0 KiB
Fortran

subroutine GF2_ppBSE2_dynamic_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nVV,lambda,ERI,eGF,OmBSE,KC_dyn,ZC_dyn)
! Compute the resonant part of the dynamic BSE2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
double precision,intent(in) :: OmBSE
! Local variables
double precision :: dem,num
integer :: m
integer :: a,b,c,d,e
integer :: ab,cd
! Output variables
double precision,intent(out) :: KC_dyn(nVV,nVV)
double precision,intent(out) :: ZC_dyn(nVV,nVV)
! Initialization
KC_dyn(:,:) = 0d0
ZC_dyn(:,:) = 0d0
! Second-order correlation kernel for the block C of the singlet manifold
if(ispin == 1) then
ab = 0
do a=nO+1,nBas-nR
do b=a,nBas-nR
ab = ab + 1
cd = 0
do c=nO+1,nBas-nR
do d=c,nBas-nR
cd = cd + 1
do m=nC+1,nO
do e=nO+1,nBas-nR
dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(b)
num = 2d0*ERI(a,m,c,e)*ERI(b,e,d,m) - ERI(a,m,c,e)*ERI(b,e,m,d) &
- ERI(a,m,e,c)*ERI(b,e,d,m) + 2d0*ERI(a,m,e,c)*ERI(b,e,m,d)
KC_dyn(ab,cd) = KC_dyn(ab,cd) + 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(a)
num = 2d0*ERI(b,m,c,e)*ERI(a,e,d,m) - ERI(b,m,c,e)*ERI(a,e,m,d) &
- ERI(b,m,e,c)*ERI(a,e,d,m) + 2d0*ERI(b,m,e,c)*ERI(a,e,m,d)
KC_dyn(ab,cd) = KC_dyn(ab,cd) - 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(d) + eGF(m) - eGF(e) - eGF(a)
num = 2d0*ERI(a,e,c,m)*ERI(b,m,d,e) - ERI(a,e,c,m)*ERI(b,m,e,d) &
- ERI(a,e,m,c)*ERI(b,m,d,e) + 2d0*ERI(a,e,m,c)*ERI(b,m,e,d)
KC_dyn(ab,cd) = KC_dyn(ab,cd) + 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(d) + eGF(m) - eGF(e) - eGF(b)
num = 2d0*ERI(b,e,c,m)*ERI(a,m,d,e) - ERI(b,e,c,m)*ERI(a,m,e,d) &
- ERI(b,e,m,c)*ERI(a,m,d,e) + 2d0*ERI(b,e,c,m)*ERI(a,m,e,d)
KC_dyn(ab,cd) = KC_dyn(ab,cd) - 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
end do
end do
end do
end do
end do
end if
! Second-order correlation kernel for the block C of the triplet manifold
if(ispin == 2) then
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
do m=nC+1,nO
do e=nO+1,nBas-nR
dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(b)
num = 2d0*ERI(a,m,c,e)*ERI(b,e,d,m) - ERI(a,m,c,e)*ERI(b,e,m,d) - ERI(a,m,e,c)*ERI(b,e,d,m)
KC_dyn(ab,cd) = KC_dyn(ab,cd) + 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(a)
num = 2d0*ERI(b,m,c,e)*ERI(a,e,d,m) - ERI(b,m,c,e)*ERI(a,e,m,d) - ERI(b,m,e,c)*ERI(a,e,d,m)
KC_dyn(ab,cd) = KC_dyn(ab,cd) - 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(d) + eGF(m) - eGF(e) - eGF(a)
num = 2d0*ERI(a,e,c,m)*ERI(b,m,d,e) - ERI(a,e,c,m)*ERI(b,m,e,d) - ERI(a,e,m,c)*ERI(b,m,d,e)
KC_dyn(ab,cd) = KC_dyn(ab,cd) + 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(d) + eGF(m) - eGF(e) - eGF(b)
num = 2d0*ERI(b,e,c,m)*ERI(a,m,d,e) - ERI(b,e,c,m)*ERI(a,m,e,d) - ERI(b,e,m,c)*ERI(a,m,d,e)
KC_dyn(ab,cd) = KC_dyn(ab,cd) - 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
end do
end do
end do
end do
end do
end if
end subroutine