quack/src/GF/GF2_ppBSE2_dynamic_kernel_B...

138 lines
4.1 KiB
Fortran

subroutine GF2_ppBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nOO,nVV,lambda,ERI,eGF,KB_dyn)
! Compute the resonant part of the dynamic BSE2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
! Local variables
double precision :: dem,num
integer :: i,j,k,a,b,c
integer :: ab,ij
! Output variables
double precision,intent(out) :: KB_dyn(nVV,nOO)
! Initialization
KB_dyn(:,:) = 0d0
! Second-order correlation kernel for the block B of the singlet manifold
if(ispin == 1) then
ab = 0
do a=nO+1,nBas-nR
do b=a,nBas-nR
ab = ab + 1
ij = 0
do i=nC+1,nO
do j=i,nO
ij = ij + 1
do k=nC+1,nO
do c=nO+1,nBas-nR
dem = eGF(j) + eGF(k) - eGF(c) - eGF(b)
num = 2d0*ERI(a,k,i,c)*ERI(b,c,j,k) - ERI(a,k,i,c)*ERI(b,c,k,j) &
- ERI(a,k,c,i)*ERI(b,c,j,k) + 2d0*ERI(a,k,c,i)*ERI(b,c,k,j)
KB_dyn(ab,ij) = KB_dyn(ab,ij) + 0.5d0*num*dem/(dem**2 + eta**2)
dem = eGF(j) + eGF(k) - eGF(c) - eGF(a)
num = 2d0*ERI(b,k,i,c)*ERI(a,c,j,k) - ERI(b,k,i,c)*ERI(a,c,k,j) &
- ERI(b,k,c,i)*ERI(a,c,j,k) + 2d0*ERI(b,k,c,i)*ERI(a,c,k,j)
KB_dyn(ab,ij) = KB_dyn(ab,ij) - 0.5d0*num*dem/(dem**2 + eta**2)
dem = eGF(i) + eGF(k) - eGF(c) - eGF(a)
num = 2d0*ERI(a,c,i,k)*ERI(b,k,j,c) - ERI(a,c,i,k)*ERI(b,k,c,j) &
- ERI(a,c,k,i)*ERI(b,k,j,c) + 2d0*ERI(a,c,k,i)*ERI(b,k,c,j)
KB_dyn(ab,ij) = KB_dyn(ab,ij) + 0.5d0*num*dem/(dem**2 + eta**2)
dem = eGF(i) + eGF(k) - eGF(c) - eGF(b)
num = 2d0*ERI(b,c,i,k)*ERI(a,k,j,c) - ERI(b,c,i,k)*ERI(a,k,c,j) &
- ERI(b,c,k,i)*ERI(a,k,j,c) + 2d0*ERI(b,c,k,i)*ERI(a,k,c,j)
KB_dyn(ab,ij) = KB_dyn(ab,ij) - 0.5d0*num*dem/(dem**2 + eta**2)
end do
end do
end do
end do
end do
end do
end if
! Second-order correlation kernel for the block B of the triplet manifold
if(ispin == 2) then
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
do k=nC+1,nO
do c=nO+1,nBas-nR
dem = eGF(j) + eGF(k) - eGF(c) - eGF(b)
num = 2d0*ERI(a,k,i,c)*ERI(b,c,j,k) - ERI(a,k,i,c)*ERI(b,c,k,j) - ERI(a,k,c,i)*ERI(b,c,j,k)
KB_dyn(ab,ij) = KB_dyn(ab,ij) + 0.5d0*num*dem/(dem**2 + eta**2)
dem = eGF(j) + eGF(k) - eGF(c) - eGF(a)
num = 2d0*ERI(b,k,i,c)*ERI(a,c,j,k) - ERI(b,k,i,c)*ERI(a,c,k,j) - ERI(b,k,c,i)*ERI(a,c,j,k)
KB_dyn(ab,ij) = KB_dyn(ab,ij) - 0.5d0*num*dem/(dem**2 + eta**2)
dem = eGF(i) + eGF(k) - eGF(c) - eGF(a)
num = 2d0*ERI(a,c,i,k)*ERI(b,k,j,c) - ERI(a,c,i,k)*ERI(b,k,c,j) - ERI(a,c,k,i)*ERI(b,k,j,c)
KB_dyn(ab,ij) = KB_dyn(ab,ij) + 0.5d0*num*dem/(dem**2 + eta**2)
dem = eGF(i) + eGF(k) - eGF(c) - eGF(b)
num = 2d0*ERI(b,c,i,k)*ERI(a,k,j,c) - ERI(b,c,i,k)*ERI(a,k,c,j) - ERI(b,c,k,i)*ERI(a,k,j,c)
KB_dyn(ab,ij) = KB_dyn(ab,ij) - 0.5d0*num*dem/(dem**2 + eta**2)
end do
end do
end do
end do
end do
end do
end if
end subroutine