quack/src/GF/GF2_phBSE2_dynamic_perturba...

115 lines
4.1 KiB
Fortran

subroutine GF2_phBSE2_dynamic_perturbation(dTDA,ispin,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,KA_sta,KB_sta,OmBSE,XpY,XmY)
! Compute dynamical effects via perturbation theory for BSE
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dTDA
integer,intent(in) :: ispin
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
double precision,intent(in) :: eGF(nBas)
double precision,intent(in) :: KA_sta(nS,nS)
double precision,intent(in) :: KB_sta(nS,nS)
double precision,intent(in) :: OmBSE(nS)
double precision,intent(in) :: XpY(nS,nS)
double precision,intent(in) :: XmY(nS,nS)
! Local variables
integer :: ia
integer,parameter :: maxS = 10
double precision :: gapGF
double precision,allocatable :: OmDyn(:)
double precision,allocatable :: ZDyn(:)
double precision,allocatable :: X(:)
double precision,allocatable :: Y(:)
double precision,allocatable :: KAp_dyn(:,:)
double precision,allocatable :: KAm_dyn(:,:)
double precision,allocatable :: ZAp_dyn(:,:)
double precision,allocatable :: ZAm_dyn(:,:)
double precision,allocatable :: KB_dyn(:,:)
! Memory allocation
allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),KAp_dyn(nS,nS),ZAp_dyn(nS,nS), &
KAm_dyn(nS,nS),ZAm_dyn(nS,nS),KB_dyn(nS,nS))
if(dTDA) then
write(*,*)
write(*,*) '*** dynamical TDA activated ***'
write(*,*)
end if
! Print main components of transition vectors
call phLR_transition_vectors(.false.,nBas,nC,nO,nV,nR,nS,dipole_int,OmBSE,XpY,XmY)
gapGF = eGF(nO+1) - eGF(nO)
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,*) ' First-order dynamical correction to static 2nd-order Bethe-Salpeter excitation energies '
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,'(A58,F10.6,A3)') ' BSE neutral excitation must be lower than the GF2 gap = ',gapGF*HaToeV,' eV'
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,'(2X,A5,1X,A20,1X,A20,1X,A20,1X,A20)') '#','Static (eV)','Dynamic (eV)','Correction (eV)','Renorm. (eV)'
write(*,*) '---------------------------------------------------------------------------------------------------'
do ia=1,min(nS,maxS)
X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:))
Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:))
! Resonant part of the BSE correction for dynamical TDA
call GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,eGF,+OmBSE(ia),KAp_dyn,ZAp_dyn)
if(dTDA) then
ZDyn(ia) = dot_product(X,matmul(ZAp_dyn,X))
OmDyn(ia) = dot_product(X,matmul(KAp_dyn - KA_sta,X))
else
! Second part of the resonant and anti-resonant part of the BSE correction (frequency independent)
call GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,eGF,-OmBSE(ia),KAm_dyn,ZAm_dyn)
call GF2_phBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,eGF,KB_dyn)
ZDyn(ia) = dot_product(X,matmul(ZAp_dyn,X)) &
+ dot_product(Y,matmul(ZAm_dyn,Y))
OmDyn(ia) = dot_product(X,matmul(KAp_dyn - KA_sta,X)) &
- dot_product(Y,matmul(KAm_dyn - KA_sta,Y)) &
+ dot_product(X,matmul(KB_dyn - KB_sta,Y)) &
- dot_product(Y,matmul(KB_dyn - KB_sta,X))
end if
ZDyn(ia) = 1d0/(1d0 - ZDyn(ia))
OmDyn(ia) = ZDyn(ia)*OmDyn(ia)
write(*,'(2X,I5,5X,F15.6,5X,F15.6,5X,F15.6,5X,F15.6)') &
ia,OmBSE(ia)*HaToeV,(OmBSE(ia)+OmDyn(ia))*HaToeV,OmDyn(ia)*HaToeV,ZDyn(ia)
end do
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,*)
end subroutine