subroutine ufG0T0pp(dotest,TDA_T,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF) ! Upfolded G0T0pp equations implicit none include 'parameters.h' ! Input variables logical,intent(in) :: dotest logical,intent(in) :: TDA_T integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: ENuc double precision,intent(in) :: ERHF double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) double precision,intent(in) :: eHF(nBas) ! Local variables integer :: p integer :: s integer :: i,j,k,l integer :: a,b,c,d integer :: ij,ab integer :: klc,kcd,ija,ijb,iab,jab logical :: print_T = .false. logical :: dRPA integer :: ispin integer :: iblock integer :: nOOs,nOOt integer :: nVVs,nVVt double precision :: EcRPA(nspin) integer :: n2h1p,n2p1h,nH double precision,external :: Kronecker_delta double precision,allocatable :: H(:,:) double precision,allocatable :: eGT(:) double precision,allocatable :: Z(:) double precision,allocatable :: Bpp(:,:) double precision,allocatable :: Cpp(:,:) double precision,allocatable :: Dpp(:,:) double precision,allocatable :: Om1s(:),Om1t(:) double precision,allocatable :: X1s(:,:),X1t(:,:) double precision,allocatable :: Y1s(:,:),Y1t(:,:) double precision,allocatable :: rho1s(:,:,:),rho1t(:,:,:) double precision,allocatable :: Om2s(:),Om2t(:) double precision,allocatable :: X2s(:,:),X2t(:,:) double precision,allocatable :: Y2s(:,:),Y2t(:,:) double precision,allocatable :: rho2s(:,:,:),rho2t(:,:,:) logical :: verbose = .true. double precision,parameter :: cutoff1 = 0.01d0 double precision,parameter :: cutoff2 = 0.01d0 double precision :: eF double precision,parameter :: window = 1.5d0 double precision :: start_timing,end_timing,timing ! Output variables ! Hello world write(*,*) write(*,*)'******************************************' write(*,*)'* Restricted Upfolded G0T0pp Calculation *' write(*,*)'******************************************' write(*,*) ! Dimensions of the ppRPA linear reponse matrices ! nOOs = nO*(nO + 1)/2 ! nVVs = nV*(nV + 1)/2 nOOs = nO*nO nVVs = nV*nV nOOt = nO*(nO - 1)/2 nVVt = nV*(nV - 1)/2 ! nOO = nO*nO ! nVV = nV*nV ! Dimension of the supermatrix n2h1p = (nOOs+nOOt)*nV n2p1h = (nVVs+nVVt)*nO nH = 1 + n2h1p + n2p1h ! Initialization dRPA = .true. EcRPA = 0d0 eF = 0.5d0*(eHF(nO+1) + eHF(nO)) !------------------! ! Compute T-matrix ! !------------------! if(.not. TDA_T) then ! Memory allocation allocate(Om1s(nVVs),X1s(nVVs,nVVs),Y1s(nOOs,nVVs), & Om2s(nOOs),X2s(nVVs,nOOs),Y2s(nOOs,nOOs), & rho1s(nBas,nBas,nVVs),rho2s(nBas,nBas,nOOs), & Om1t(nVVt),X1t(nVVt,nVVt),Y1t(nOOt,nVVt), & Om2t(nOOt),X2t(nVVt,nOOt),Y2t(nOOt,nOOt), & rho1t(nBas,nBas,nVVt),rho2t(nBas,nBas,nOOt)) ! alpha-beta block ispin = 1 ! iblock = 1 iblock = 3 ! Compute linear response allocate(Bpp(nVVs,nOOs),Cpp(nVVs,nVVs),Dpp(nOOs,nOOs)) call ppLR_B(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,1d0,ERI,Bpp) call ppLR_C(iblock,nBas,nC,nO,nV,nR,nVVs,1d0,eHF,ERI,Cpp) call ppLR_D(iblock,nBas,nC,nO,nV,nR,nOOs,1d0,eHF,ERI,Dpp) call ppLR(TDA_T,nOOs,nVVs,Bpp,Cpp,Dpp,Om1s,X1s,Y1s,Om2s,X2s,Y2s,EcRPA(ispin)) if(print_T) call print_excitation_energies('ppRPA@RHF','2p (alpha-beta)',nVVs,Om1s(:)) if(print_T) call print_excitation_energies('ppRPA@RHF','2h (alpha-beta)',nOOs,Om2s(:)) ! Compute excitation densities call GTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI,X1s,Y1s,rho1s,X2s,Y2s,rho2s) deallocate(Bpp,Cpp,Dpp,X1s,Y1s,X2s,Y2s) ! alpha-alpha block ispin = 2 ! iblock = 2 iblock = 4 ! Compute linear response allocate(Bpp(nVVt,nOOt),Cpp(nVVt,nVVt),Dpp(nOOt,nOOt)) call ppLR_B(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,1d0,ERI,Bpp) call ppLR_C(iblock,nBas,nC,nO,nV,nR,nVVt,1d0,eHF,ERI,Cpp) call ppLR_D(iblock,nBas,nC,nO,nV,nR,nOOt,1d0,eHF,ERI,Dpp) call ppLR(TDA_T,nOOt,nVVt,Bpp,Cpp,Dpp,Om1t,X1t,Y1t,Om2t,X2t,Y2t,EcRPA(ispin)) if(print_T) call print_excitation_energies('ppRPA@RHF','2p (alpha-alpha)',nVVt,Om1t) if(print_T) call print_excitation_energies('ppRPA@RHF','2h (alpha-beta)',nOOt,Om2t) ! Compute excitation densities call GTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI,X1t,Y1t,rho1t,X2t,Y2t,rho2t) deallocate(Bpp,Cpp,Dpp,X1t,Y1t,X2t,Y2t) end if ! Memory allocation allocate(H(nH,nH),eGT(nH),Z(nH)) !-------------------------! ! Main loop over orbitals ! !-------------------------! do p=nO,nO+1 H(:,:) = 0d0 if (TDA_T) then ! TDA for T write(*,*) 'Tamm-Dancoff approximation actived!' write(*,*) !---------------------------! ! Compute GW supermatrix ! !---------------------------! ! ! ! | F V2h1p V2p1h | ! ! | | ! ! H = | V2h1p C2h1p 0 | ! ! | | ! ! | V2p1h 0 C2p1h | ! ! ! !---------------------------! call wall_time(start_timing) !---------! ! Block F ! !---------! ! H(1,1) = eHF(p) !-------------! ! Block V2h1p ! !-------------! ! ija = 0 ! do i=nC+1,nO ! do j=nC+1,nO ! do a=nO+1,nBas-nR ! ija = ija + 1 ! ! H(1 ,1+ija) = ERI(p,a,i,j) ! H(1+ija,1 ) = ERI(p,a,i,j) ! ! end do ! end do ! end do ! !-------------! ! ! Block V2p1h ! ! !-------------! ! ! iab = 0 ! do i=nC+1,nO ! do a=nO+1,nBas-nR ! do b=nO+1,nBas-nR ! iab = iab + 1 ! ! H(1 ,1+n2h1p+iab) = sqrt(2d0)*ERI(p,i,b,a) ! H(1+n2h1p+iab,1 ) = sqrt(2d0)*ERI(p,i,b,a) ! ! end do ! end do ! end do ! ! !-------------! ! ! Block C2h1p ! ! !-------------! ! ! ija = 0 ! do i=nC+1,nO ! do j=nC+1,nO ! do a=nO+1,nBas-nR ! ija = ija + 1 ! ! klc = 0 ! do k=nC+1,nO ! do l=nC+1,nO ! do c=nO+1,nBas-nR ! klc = klc + 1 ! ! H(1+ija,1+klc) & ! = ((eHF(i) + eHF(j) - eHF(a))*Kronecker_delta(j,l)*Kronecker_delta(a,c) & ! - 2d0*ERI(j,c,a,l))*Kronecker_delta(i,k) ! ! end do ! end do ! end do ! ! end do ! end do ! end do ! ! !-------------! ! ! Block C2p1h ! ! !-------------! ! ! iab = 0 ! do i=nC+1,nO ! do a=nO+1,nBas-nR ! do b=nO+1,nBas-nR ! iab = iab + 1 ! ! kcd = 0 ! do k=nC+1,nO ! do c=nO+1,nBas-nR ! do d=nO+1,nBas-nR ! kcd = kcd + 1 ! ! H(1+n2h1p+iab,1+n2h1p+kcd) & ! = ((eHF(a) + eHF(b) - eHF(i))*Kronecker_delta(i,k)*Kronecker_delta(a,c) & ! + 2d0*ERI(a,k,i,c))*Kronecker_delta(b,d) ! ! end do ! end do ! end do ! ! end do ! end do ! end do ! call wall_time(end_timing) timing = end_timing - start_timing write(*,*) write(*,'(A65,1X,F9.3,A8)') 'Total CPU time for construction of supermatrix = ',timing,' seconds' write(*,*) else ! RPA for T write(*,*) 'Tamm-Dancoff approximation deactivated!' write(*,*) !---------------------------! ! Compute GW supermatrix ! !---------------------------! ! ! ! | F W2h1p W2p1h | ! ! | | ! ! H = | W2h1p D2h1p 0 | ! ! | | ! ! | W2p1h 0 D2p1h | ! ! ! !---------------------------! call wall_time(start_timing) !---------! ! Block F ! !---------! H(1,1) = eHF(p) !-------------! ! Block D2h1p ! !-------------! ija = 0 do ij=1,nOOs do a=nO+1,nBas-nR ija = ija + 1 H(1+ija,1+ija) = - eHF(a) + Om2s(ij) end do end do do ij=1,nOOt do a=nO+1,nBas-nR ija = ija + 1 H(1+ija,1+ija) = - eHF(a) + Om2t(ij) end do end do !-------------! ! Block W2h1p ! !-------------! ija = 0 do ij=1,nOOs do a=nO+1,nBas-nR ija = ija + 1 H(1 ,1+ija) = rho2s(p,a,ij) H(1+ija,1 ) = rho2s(p,a,ij) end do end do do ij=1,nOOt do a=nO+1,nBas-nR ija = ija + 1 H(1 ,1+ija) = rho2t(p,a,ij) H(1+ija,1 ) = rho2t(p,a,ij) end do end do !-------------! ! Block D2p1h ! !-------------! iab = 0 do ab=1,nVVs do i=nC+1,nO iab = iab + 1 H(1+n2h1p+iab,1+n2h1p+iab) = - eHF(i) + Om1s(ab) end do end do do ab=1,nVVt do i=nC+1,nO iab = iab + 1 H(1+n2h1p+iab,1+n2h1p+iab) = - eHF(i) + Om1t(ab) end do end do !-------------! ! Block W2p1h ! !-------------! iab = 0 do ab=1,nVVs do i=nC+1,nO iab = iab + 1 H(1 ,1+n2h1p+iab) = rho1s(p,i,ab) H(1+n2h1p+iab,1 ) = rho1s(p,i,ab) end do end do do ab=1,nVVt do i=nC+1,nO iab = iab + 1 H(1 ,1+n2h1p+iab) = rho1t(p,i,ab) H(1+n2h1p+iab,1 ) = rho1t(p,i,ab) end do end do call wall_time(end_timing) timing = end_timing - start_timing write(*,*) write(*,'(A65,1X,F9.3,A8)') 'Total CPU time for construction of supermatrix = ',timing,' seconds' write(*,*) end if !-------------------------! ! Diagonalize supermatrix ! !-------------------------! call wall_time(start_timing) call diagonalize_matrix(nH,H,eGT) call wall_time(end_timing) timing = end_timing - start_timing write(*,*) write(*,'(A65,1X,F9.3,A8)') 'Total CPU time for diagonalization of supermatrix = ',timing,' seconds' write(*,*) !-----------------! ! Compute weights ! !-----------------! do s=1,nH Z(s) = H(1,s)**2 end do !--------------! ! Dump results ! !--------------! write(*,*)'-------------------------------------------' write(*,'(1X,A34,I3,A6)')'| G0T0pp energies (eV) for orbital',p,' |' write(*,*)'-------------------------------------------' write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X)') & '|','#','|','e_QP','|','Z','|' write(*,*)'-------------------------------------------' do s=1,nH if(eGT(s) < eF .and. eGT(s) > eF - window) then !if(Z(s) > cutoff1) then write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') & '|',s,'|',eGT(s)*HaToeV,'|',Z(s),'|' end if end do write(*,*)'-------------------------------------------' write(*,*) if(verbose) then if(TDA_T) then ! TDA printing format ! do s=1,nH ! ! if(eGT(s) < eF .and. eGT(s) > eF - window) then ! ! write(*,*)'-------------------------------------------------------------' ! write(*,'(1X,A7,1X,I3,A6,I3,A1,1X,A7,F12.6,A13,F6.4,1X)') & ! 'Orbital',p,' and #',s,':','e_QP = ',eGT(s)*HaToeV,' eV and Z = ',Z(s) ! write(*,*)'-------------------------------------------------------------' ! write(*,'(1X,A20,1X,A20,1X,A15,1X)') & ! ' Configuration ',' Coefficient ',' Weight ' ! write(*,*)'-------------------------------------------------------------' ! ! if(p <= nO) & ! write(*,'(1X,A7,I3,A16,1X,F15.6,1X,F15.6)') & ! ' (',p,') ',H(1,s),H(1,s)**2 ! if(p > nO) & ! write(*,'(1X,A16,I3,A7,1X,F15.6,1X,F15.6)') & ! ' (',p,') ',H(1,s),H(1,s)**2 ! ! ija = 0 ! do i=nC+1,nO ! do j=nC+1,nO ! do a=nO+1,nBas-nR ! ija = ija + 1 ! ! if(abs(H(1+ija,s)) > cutoff2) & ! write(*,'(1X,A3,I3,A1,I3,A6,I3,A7,1X,F15.6,1X,F15.6)') & ! ' (',i,',',j,') -> (',a,') ',H(1+ija,s),H(1+ija,s)**2 ! ! end do ! end do ! end do ! ! iab = 0 ! do i=nC+1,nO ! do a=nO+1,nBas-nR ! do b=nO+1,nBas-nR ! iab = iab + 1 ! ! if(abs(H(1+n2h1p+iab,s)) > cutoff2) & ! write(*,'(1X,A7,I3,A6,I3,A1,I3,A3,1X,F15.6,1X,F15.6)') & ! ' (',i,') -> (',a,',',b,') ',H(1+n2h1p+iab,s),H(1+n2h1p+iab,s)**2 ! ! end do ! end do ! end do ! write(*,*)'-------------------------------------------------------------' ! write(*,*) ! end if ! end do else ! non-TDA printing format do s=1,nH if(eGT(s) < eF .and. eGT(s) > eF - window) then !if(Z(s) > cutoff2) then write(*,*)'-------------------------------------------------------------' write(*,'(1X,A7,1X,I3,A6,I3,A1,1X,A7,F12.6,A13,F6.4,1X)') & 'Orbital',p,' and #',s,':','e_QP = ',eGT(s)*HaToeV,' eV and Z = ',Z(s) write(*,*)'-------------------------------------------------------------' write(*,'(1X,A24,1X,A20,1X,A15,1X)') & ' Conf. (i,ab) or (a,ij) ',' Coefficient ',' Weight ' write(*,*)'-------------------------------------------------------------' if(p <= nO) & write(*,'(1X,A7,I3,A16,1X,F15.6,1X,F15.6,1X,F12.6)') & ' (',p,') ',H(1,s),H(1,s)**2,-eHF(p)*HaToeV if(p > nO) & write(*,'(1X,A16,I3,A7,1X,F15.6,1X,F15.6,1X,F12.6)') & ' (',p,') ',H(1,s),H(1,s)**2,-eHF(p)*HaToeV ija = 0 do ij=1,nOOs+nOOt do a=nO+1,nBas-nR ija = ija + 1 if(abs(H(1+ija,s)) > cutoff2 .and. ij cutoff2 .and. ij>nOOs) & write(*,'(1X,A7,I3,A1,I3,A12,1X,F15.6,1X,F15.6,1X,F12.6)') & ' (',a,',',ij,') ',H(1+ija,s),H(1+ija,s)**2,(- eHF(a) + Om2t(ij-nOOs))*HaToeV end do end do iab = 0 do ab=1,nVVs+nVVt do i=nC+1,nO iab = iab + 1 if(abs(H(1+n2h1p+iab,s)) > cutoff2 .and. ab cutoff2 .and. ab>nVVs) & write(*,'(1X,A7,I3,A1,I3,A12,1X,F15.6,1X,F15.6,1X,F12.6)') & ' (',i,',',ab,') ',H(1+n2h1p+iab,s),H(1+n2h1p+iab,s)**2,(-eHF(i) + Om1t(ab-nVVs))*HaToeV end do end do write(*,*)'-------------------------------------------------------------' write(*,*) end if end do end if end if end do end subroutine