subroutine phRPA(TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC,nO,nV,nR,nS,ENuc,EHF,ERI,dipole_int,e) ! Perform a direct random phase approximation calculation implicit none include 'parameters.h' include 'quadrature.h' ! Input variables logical,intent(in) :: TDA logical,intent(in) :: doACFDT logical,intent(in) :: exchange_kernel logical,intent(in) :: singlet logical,intent(in) :: triplet integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: ENuc double precision,intent(in) :: EHF double precision,intent(in) :: e(nBas) double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) double precision,intent(in) :: dipole_int(nBas,nBas,ncart) ! Local variables integer :: ispin logical :: dRPA double precision,allocatable :: Aph(:,:) double precision,allocatable :: Bph(:,:) double precision,allocatable :: Om(:) double precision,allocatable :: XpY(:,:) double precision,allocatable :: XmY(:,:) double precision :: EcRPA(nspin) ! Hello world write(*,*) write(*,*)'***********************************************' write(*,*)'| Random-phase approximation calculation |' write(*,*)'***********************************************' write(*,*) ! TDA if(TDA) then write(*,*) 'Tamm-Dancoff approximation activated!' write(*,*) end if ! Initialization dRPA = .true. EcRPA(:) = 0d0 ! Memory allocation allocate(Om(nS),XpY(nS,nS),XmY(nS,nS),Aph(nS,nS)) if(.not.TDA) allocate(Bph(nS,nS)) ! Singlet manifold if(singlet) then ispin = 1 call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,e,ERI,Aph) if(.not.TDA) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph) call phLR(TDA,nS,Aph,Bph,EcRPA(ispin),Om,XpY,XmY) call print_excitation_energies('phRPA@HF',ispin,nS,Om) call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY) endif ! Triplet manifold if(triplet) then ispin = 2 call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,e,ERI,Aph) if(.not.TDA) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph) call phLR(TDA,nS,Aph,Bph,EcRPA(ispin),Om,XpY,XmY) call print_excitation_energies('phRPA@HF',ispin,nS,Om) call phLR_transition_vectors(.false.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY) endif if(exchange_kernel) then EcRPA(1) = 0.5d0*EcRPA(1) EcRPA(2) = 1.5d0*EcRPA(2) end if write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10)') 'Tr@phRPA correlation energy (singlet) =',EcRPA(1) write(*,'(2X,A50,F20.10)') 'Tr@phRPA correlation energy (triplet) =',EcRPA(2) write(*,'(2X,A50,F20.10)') 'Tr@phRPA correlation energy =',EcRPA(1) + EcRPA(2) write(*,'(2X,A50,F20.10)') 'Tr@phRPA total energy =',ENuc + EHF + EcRPA(1) + EcRPA(2) write(*,*)'-------------------------------------------------------------------------------' write(*,*) deallocate(Om,XpY,XmY,Aph,Bph) ! Compute the correlation energy via the adiabatic connection if(doACFDT) then write(*,*) '--------------------------------------------------------' write(*,*) 'Adiabatic connection version of phRPA correlation energy' write(*,*) '--------------------------------------------------------' write(*,*) call phACFDT(exchange_kernel,dRPA,TDA,singlet,triplet,nBas,nC,nO,nV,nR,nS,ERI,e,EcRPA) write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10)') 'AC@phRPA correlation energy (singlet) =',EcRPA(1) write(*,'(2X,A50,F20.10)') 'AC@phRPA correlation energy (triplet) =',EcRPA(2) write(*,'(2X,A50,F20.10)') 'AC@phRPA correlation energy =',EcRPA(1) + EcRPA(2) write(*,'(2X,A50,F20.10)') 'AC@phRPA total energy =',ENuc + EHF + EcRPA(1) + EcRPA(2) write(*,*)'-------------------------------------------------------------------------------' write(*,*) end if end subroutine