subroutine qsUGTpp(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE, & TDA_T,TDA,dBSE,dTDA,spin_conserved,spin_flip,& eta,regularize,nBas,nC,nO,nV,nR,nS,nNuc,ZNuc,rNuc,ENuc,EUHF,S,X,T,V,Hc,ERI_AO,ERI_aaaa,& ERI_aabb,ERI_bbbb,dipole_int_AO,dipole_int_aa,dipole_int_bb,PHF,cHF,eHF) ! Perform a quasiparticle self-consistent GT calculation implicit none include 'parameters.h' ! Input variables logical,intent(in) :: dotest integer,intent(in) :: maxSCF integer,intent(in) :: max_diis double precision,intent(in) :: thresh logical,intent(in) :: doACFDT logical,intent(in) :: exchange_kernel logical,intent(in) :: doXBS logical,intent(in) :: BSE logical,intent(in) :: TDA_T logical,intent(in) :: TDA logical,intent(in) :: dBSE logical,intent(in) :: dTDA logical,intent(in) :: spin_conserved logical,intent(in) :: spin_flip double precision,intent(in) :: eta logical,intent(in) :: regularize integer,intent(in) :: nNuc double precision,intent(in) :: ZNuc(nNuc) double precision,intent(in) :: rNuc(nNuc,ncart) integer,intent(in) :: nBas integer,intent(in) :: nC(nspin) integer,intent(in) :: nO(nspin) integer,intent(in) :: nV(nspin) integer,intent(in) :: nR(nspin) integer,intent(in) :: nS(nspin) double precision,intent(in) :: ENuc double precision,intent(in) :: EUHF double precision,intent(in) :: eHF(nBas,nspin) double precision,intent(in) :: cHF(nBas,nBas,nspin) double precision,intent(in) :: PHF(nBas,nBas,nspin) double precision,intent(in) :: S(nBas,nBas) double precision,intent(in) :: T(nBas,nBas) double precision,intent(in) :: V(nBas,nBas) double precision,intent(in) :: Hc(nBas,nBas) double precision,intent(in) :: X(nBas,nBas) double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas) double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart) double precision,intent(in) :: dipole_int_aa(nBas,nBas,ncart) double precision,intent(in) :: dipole_int_bb(nBas,nBas,ncart) ! Local variables integer :: nSCF integer :: nBasSq double precision :: dipole(ncart) integer :: n_diis double precision :: rcond(nspin) double precision,external :: trace_matrix double precision :: Conv double precision :: ET(nspin) double precision :: EV(nspin) double precision :: EJ(nsp) double precision :: Ex(nspin) double precision :: EqsGT integer :: ispin,is integer :: iblock integer :: nH_sc,nH_sf,nHaa,nHab,nHbb integer :: nP_sc,nP_sf,nPaa,nPab,nPbb double precision :: EcRPA(nspin),Ecaa,Ecbb double precision :: EcBSE(nspin) double precision :: EcAC(nspin) double precision :: EcGM(nspin) double precision,allocatable :: Om1ab(:),Om1aa(:),Om1bb(:) double precision,allocatable :: X1ab(:,:),X1aa(:,:),X1bb(:,:) double precision,allocatable :: Y1ab(:,:),Y1aa(:,:),Y1bb(:,:) double precision,allocatable :: rho1ab(:,:,:),rho1aa(:,:,:),rho1bb(:,:,:) double precision,allocatable :: Om2ab(:),Om2aa(:),Om2bb(:) double precision,allocatable :: X2ab(:,:),X2aa(:,:),X2bb(:,:) double precision,allocatable :: Y2ab(:,:),Y2aa(:,:),Y2bb(:,:) double precision,allocatable :: rho2ab(:,:,:),rho2aa(:,:,:),rho2bb(:,:,:) double precision,allocatable :: c(:,:,:) double precision,allocatable :: cp(:,:,:) double precision,allocatable :: P(:,:,:) double precision,allocatable :: F(:,:,:) double precision,allocatable :: Fp(:,:,:) double precision,allocatable :: J(:,:,:) double precision,allocatable :: K(:,:,:) double precision,allocatable :: SigT(:,:,:) double precision,allocatable :: SigTp(:,:,:) double precision,allocatable :: Z(:,:) double precision,allocatable :: eGT(:,:) double precision,allocatable :: eOld(:,:) double precision,allocatable :: error_diis(:,:,:) double precision,allocatable :: e_diis(:,:,:) double precision,allocatable :: F_diis(:,:,:) double precision,allocatable :: error(:,:,:) ! Hello world write(*,*) write(*,*)'***********************************' write(*,*)'* Unrestricted evGTpp Calculation *' write(*,*)'***********************************' write(*,*) ! Dimensions of the pp-URPA linear reponse matrices nPaa = nV(1)*(nV(1)-1)/2 nPbb = nV(2)*(nV(2)-1)/2 nHaa = nO(1)*(nO(1)-1)/2; nHbb = nO(2)*(nO(2)-1)/2; nPab = nV(1)*nV(2) nHab = nO(1)*nO(2) nP_sc = nPab nH_sc = nHab nP_sf = nPaa + nPbb nH_sf = nHaa + nHbb nBasSq = nBas*nBas ! Memory allocation allocate(SigT(nBas,nbas,nspin),SigTp(nBas,nbas,nspin), & Z(nBas,nspin),eGT(nBas,nspin),eOld(nBas,nspin), & error_diis(nBas,max_diis,nspin),e_diis(nBasSq,max_diis,nspin), & F_diis(nBasSq,max_diis,nspin),error(nBas,nBas,nspin),& c(nBas,nBas,nspin),cp(nBas,nBas,nspin),P(nBas,nBas,nspin),F(nBas,nBas,nspin), & Fp(nBas,nBas,nspin),J(nBas,nBas,nspin),K(nBas,nBas,nspin)) allocate(Om1ab(nPab),X1ab(nPab,nPab),Y1ab(nHab,nPab), & Om2ab(nHab),X2ab(nPab,nHab),Y2ab(nHab,nHab), & rho1ab(nBas,nBas,nPab),rho2ab(nBas,nBas,nHab), & Om1aa(nPaa),X1aa(nPaa,nPaa),Y1aa(nHaa,nPaa), & Om2aa(nHaa),X2aa(nPaa,nHaa),Y2aa(nHaa,nHaa), & rho1aa(nBas,nBas,nPaa),rho2aa(nBas,nBas,nHaa), & Om1bb(nPbb),X1bb(nPbb,nPbb),Y1bb(nHbb,nPbb), & Om2bb(nPbb),X2bb(nPbb,nPbb),Y2bb(nHbb,nPbb), & rho1bb(nBas,nBas,nPbb),rho2bb(nBas,nBas,nHbb)) !Initialization nSCF = -1 n_diis = 0 Conv = 1d0 P(:,:,:) = PHF(:,:,:) e_diis(:,:,:) = 0d0 error_diis(:,:,:) = 0d0 eGT(:,:) = eHF(:,:) eOld(:,:) = eHF(:,:) c(:,:,:) = cHF(:,:,:) Z(:,:) = 1d0 rcond(:) = 0d0 !------------------------------------------------------------------------ ! Main loop !------------------------------------------------------------------------ do while(Conv > thresh .and. nSCF <= maxSCF) ! Increment nSCF = nSCF + 1 ! Buid Hartree matrix do ispin=1,nspin call Hartree_matrix_AO_basis(nBas,P(:,:,ispin),ERI_AO(:,:,:,:), & J(:,:,ispin)) end do ! Compute exchange part of the self-energy do ispin=1,nspin call exchange_matrix_AO_basis(nBas,P(:,:,ispin),ERI_AO(:,:,:,:), & K(:,:,ispin)) end do ! AO to MO transformation of two-electron integrals ! 4-index transform for (aa|aa) block call AOtoMO_ERI_UHF(1,1,nBas,c,ERI_AO,ERI_aaaa) ! 4-index transform for (aa|bb) block call AOtoMO_ERI_UHF(1,2,nBas,c,ERI_AO,ERI_aabb) ! 4-index transform for (bb|bb) block call AOtoMO_ERI_UHF(2,2,nBas,c,ERI_AO,ERI_bbbb) !---------------------------------------------- ! alpha-beta block !---------------------------------------------- ispin = 1 iblock = 3 ! iblock = 1 ! Compute linear response call ppULR(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPab,nHaa,nHab,nHbb,nHab,1d0,eGT,ERI_aaaa, & ERI_aabb,ERI_bbbb,Om1ab,X1ab,Y1ab,Om2ab,X2ab,Y2ab,EcRPA(ispin)) ! EcRPA(ispin) = 1d0*EcRPA(ispin) !---------------------------------------------- ! alpha-alpha block !---------------------------------------------- ispin = 2 iblock = 4 ! Compute linear response call ppULR(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPaa,nHaa,nHab,nHbb,nHaa,1d0,eGT,ERI_aaaa, & ERI_aabb,ERI_bbbb,Om1aa,X1aa,Y1aa,Om2aa,X2aa,Y2aa,EcRPA(ispin)) Ecaa = EcRPA(2) !---------------------------------------------- ! beta-beta block !---------------------------------------------- ispin = 2 iblock = 7 ! Compute linear response call ppULR(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPbb,nHaa,nHab,nHbb,nHbb,1d0,eGT,ERI_aaaa, & ERI_aabb,ERI_bbbb,Om1bb,X1bb,Y1bb,Om2bb,X2bb,Y2bb,EcRPA(ispin)) Ecbb = EcRPA(2) EcRPA(2) = Ecaa + Ecbb EcRPA(1) = EcRPA(1) - EcRPA(2) EcRPA(2) = 3d0*EcRPA(2) !---------------------------------------------- ! Compute T-matrix version of the self-energy !---------------------------------------------- !alpha-beta block iblock = 3 call UGTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nHab,nPab,ERI_aaaa,ERI_aabb,ERI_bbbb,X1ab,Y1ab, & rho1ab,X2ab,Y2ab,rho2ab) !alpha-alpha block iblock = 4 call UGTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nHaa,nPaa,ERI_aaaa,ERI_aabb,ERI_bbbb,X1aa,Y1aa, & rho1aa,X2aa,Y2aa,rho2aa) !beta-beta block iblock = 7 call UGTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nHbb,nPbb,ERI_aaaa,ERI_aabb,ERI_bbbb,X1bb,Y1bb, & rho1bb,X2bb,Y2bb,rho2bb) call UGTpp_self_energy(eta,nBas,nC,nO,nV,nR,nHaa,nHab,nHbb,nPaa,nPab,nPbb,eGT,Om1aa,Om1ab,Om1bb,& rho1aa,rho1ab,rho1bb,Om2aa,Om2ab,Om2bb,rho2aa,rho2ab,rho2bb,EcGM,SigT,Z) ! Make correlation self-energy Hermitian and transform it back to AO basis do ispin=1,nspin SigT(:,:,ispin) = 0.5d0*(SigT(:,:,ispin) + transpose(SigT(:,:,ispin))) end do do ispin=1,nspin call MOtoAO(nBas,S,c(:,:,ispin),SigT(:,:,ispin),SigTp(:,:,ispin)) end do ! Solve the quasi-particle equation do ispin=1,nspin F(:,:,ispin) = Hc(:,:) + J(:,:,ispin) + J(:,:,mod(ispin,2)+1) + K(:,:,ispin) & + SigTp(:,:,ispin) end do ! Compute commutator and convergence criteria do ispin=1,nspin error_diis(:,:,ispin) = matmul(F(:,:,ispin),matmul(P(:,:,ispin),S(:,:))) & - matmul(matmul(S(:,:),P(:,:,ispin)),F(:,:,ispin)) end do ! DIIS extrapolation n_diis = min(n_diis+1,max_diis) if(minval(rcond(:)) > 1d-7) then do ispin=1,nspin if(nO(ispin) > 1) call DIIS_extrapolation(rcond(ispin),nBasSq,nBasSq,n_diis, & error_diis(:,1:n_diis,ispin), & F_diis(:,1:n_diis,ispin),& error_diis(:,:,ispin),F(:,:,ispin)) end do else n_diis = 0 end if ! Transform Fock matrix in orthogonal basis do ispin=1,nspin Fp(:,:,ispin) = matmul(transpose(X(:,:)),matmul(F(:,:,ispin),X(:,:))) end do ! Diagonalize Fock matrix to get eigenvectors and eigenvalues cp(:,:,:) = Fp(:,:,:) do ispin=1,nspin call diagonalize_matrix(nBas,cp(:,:,ispin),eGT(:,ispin)) end do ! Back-transform eigenvectors in non-orthogonal basis do ispin=1,nspin c(:,:,ispin) = matmul(X(:,:),cp(:,:,ispin)) end do ! Back-transform self-energy do ispin=1,nspin SigTp(:,:,ispin) = matmul(transpose(c(:,:,ispin)),matmul(SigTp(:,:,ispin),c(:,:,ispin))) end do ! Compute density matrix do ispin=1,nspin P(:,:,ispin) = matmul(c(:,1:nO(ispin),ispin),transpose(c(:,1:nO(ispin),ispin))) end do ! Save quasiparticles energy for next cycle Conv = maxval(abs(eGT(:,:) - eOld(:,:))) eOld(:,:) = eGT(:,:) !------------------------------------------------------------------------ ! Compute total energy !------------------------------------------------------------------------ ! Kinetic energy do ispin=1,nspin ET(ispin) = trace_matrix(nBas,matmul(P(:,:,ispin),T(:,:))) end do ! Potential energy do ispin=1,nspin EV(ispin) = trace_matrix(nBas,matmul(P(:,:,ispin),V(:,:))) end do ! Hartree energy EJ(1) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,1),J(:,:,1))) EJ(2) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,1),J(:,:,2))) & + 0.5d0*trace_matrix(nBas,matmul(P(:,:,2),J(:,:,1))) EJ(3) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,2),J(:,:,2))) ! Exchange energy do ispin=1,nspin Ex(ispin) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,ispin),K(:,:,ispin))) end do write(*,*) 'EcGM', EcGM(1) ! Total energy EqsGT = sum(ET(:)) + sum(EV(:)) + sum(EJ(:)) + sum(Ex(:)) ! Print results call dipole_moment(nBas,P,nNuc,ZNuc,rNuc,dipole_int_AO,dipole) call print_qsUGT(nBas,nO,nSCF,Conv,thresh,eHF,eGT,c,SigTp,Z,ENuc,ET,EV,EJ,Ex,EcGM,EcRPA,EqsGT,dipole) end do !------------------------------------------------------------------------ ! End main loop !------------------------------------------------------------------------ ! Did it actually converge? if(nSCF == maxSCF+1) then write(*,*) write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,*)' Convergence failed ' write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,*) stop end if ! Free memory deallocate(Om1ab,X1ab,Y1ab,Om2ab,X2ab,Y2ab,rho1ab,rho2ab, & Om1aa,X1aa,Y1aa,Om2aa,X2aa,Y2aa,rho1aa,rho2aa, & Om1bb,X1bb,Y1bb,Om2bb,X2bb,Y2bb,rho1bb,rho2bb) deallocate(c,cp,P,F,Fp,J,K,SigT,SigTp,Z,error,error_diis,F_diis) ! Testing zone if(dotest) then call dump_test_value('U','qsGTpp correlation energy',sum(EcRPA)) call dump_test_value('U','qsGTpp HOMOa energy',eGT(nO(1),1)) call dump_test_value('U','qsGTpp LUMOa energy',eGT(nO(1)+1,1)) call dump_test_value('U','qsGTpp HOMOa energy',eGT(nO(2),2)) call dump_test_value('U','qsGTpp LUMOa energy',eGT(nO(2)+1,2)) end if end subroutine