subroutine UGF2_reg_self_energy_diag(nBas,nC,nO,nV,nR,eta,ERI_aa,ERI_ab,ERI_bb,eHF,eGF2,SigC,Z) ! Perform unrestricted GF2 self-energy and its renormalization factor implicit none include 'parameters.h' ! Input variables integer,intent(in) :: nBas integer,intent(in) :: nC(nspin) integer,intent(in) :: nO(nspin) integer,intent(in) :: nV(nspin) integer,intent(in) :: nR(nspin) double precision,intent(in) :: eta double precision,intent(in) :: ERI_aa(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_ab(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_bb(nBas,nBas,nBas,nBas) double precision,intent(in) :: eHF(nBas,nspin) double precision,intent(in) :: eGF2(nBas,nspin) ! Local variables integer :: p integer :: i,j,a,b double precision :: eps,num double precision :: s double precision :: kappa ! Output variables double precision,intent(out) :: SigC(nBas,nspin) double precision,intent(out) :: Z(nBas,nspin) !---------------------! ! Compute self-energy | !---------------------! SigC(:,:) = 0d0 !-----------------------------------------! ! Parameters for regularized calculations ! !-----------------------------------------! s = 100d0 !----------------! ! Spin-up sector !----------------! do p=nC(1)+1,nBas-nR(1) ! Addition part: aa do i=nC(1)+1,nO(1) do a=nO(1)+1,nBas-nR(1) do b=nO(1)+1,nBas-nR(1) eps = eGF2(p,1) + eHF(i,1) - eHF(a,1) - eHF(b,1) num = ERI_aa(i,p,a,b)*ERI_aa(a,b,i,p) & - ERI_aa(i,p,a,b)*ERI_aa(a,b,p,i) kappa = 1d0 - exp(-2d0*eps**2*s) num = kappa*num SigC(p,1) = SigC(p,1) + num*eps/(eps**2 + eta**2) Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do ! Addition part: ab do i=nC(2)+1,nO(2) do a=nO(2)+1,nBas-nR(2) do b=nO(1)+1,nBas-nR(1) eps = eGF2(p,1) + eHF(i,2) - eHF(a,2) - eHF(b,1) num = ERI_ab(p,i,b,a)*ERI_ab(b,a,p,i) kappa = 1d0 - exp(-2d0*eps**2*s) num = kappa*num SigC(p,1) = SigC(p,1) + num*eps/(eps**2 + eta**2) Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do ! Removal part: aa do i=nC(1)+1,nO(1) do a=nO(1)+1,nBas-nR(1) do j=nC(1)+1,nO(1) eps = eGF2(p,1) + eHF(a,1) - eHF(i,1) - eHF(j,1) num = ERI_aa(a,p,i,j)*ERI_aa(i,j,a,p) & - ERI_aa(a,p,i,j)*ERI_aa(i,j,p,a) kappa = 1d0 - exp(-2d0*eps**2*s) num = kappa*num SigC(p,1) = SigC(p,1) + num*eps/(eps**2 + eta**2) Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do ! Removal part: ab do i=nC(2)+1,nO(2) do a=nO(2)+1,nBas-nR(2) do j=nC(1)+1,nO(1) eps = eGF2(p,1) + eHF(a,2) - eHF(i,2) - eHF(j,1) num = ERI_ab(p,a,j,i)*ERI_ab(j,i,p,a) kappa = 1d0 - exp(-2d0*eps**2*s) num = kappa*num SigC(p,1) = SigC(p,1) + num*eps/(eps**2 + eta**2) Z(p,1) = Z(p,1) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do end do !------------------! ! Spin-down sector ! !------------------! do p=nC(2)+1,nBas-nR(2) ! Addition part: bb do i=nC(2)+1,nO(2) do a=nO(2)+1,nBas-nR(2) do b=nO(2)+1,nBas-nR(2) eps = eGF2(p,2) + eHF(i,2) - eHF(a,2) - eHF(b,2) num = ERI_bb(i,p,a,b)*ERI_bb(a,b,i,p) & - ERI_bb(i,p,a,b)*ERI_bb(a,b,p,i) kappa = 1d0 - exp(-2d0*eps**2*s) num = kappa*num SigC(p,2) = SigC(p,2) + num*eps/(eps**2 + eta**2) Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do ! Addition part: ab do i=nC(1)+1,nO(1) do a=nO(1)+1,nBas-nR(1) do b=nO(2)+1,nBas-nR(2) eps = eGF2(p,2) + eHF(i,1) - eHF(a,1) - eHF(b,2) num = ERI_ab(i,p,a,b)*ERI_ab(a,b,i,p) kappa = 1d0 - exp(-2d0*eps**2*s) num = kappa*num SigC(p,2) = SigC(p,2) + num*eps/(eps**2 + eta**2) Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do ! Removal part: bb do i=nC(2)+1,nO(2) do a=nO(2)+1,nBas-nR(2) do j=nC(2)+1,nO(2) eps = eGF2(p,2) + eHF(a,2) - eHF(i,2) - eHF(j,2) num = ERI_bb(a,p,i,j)*ERI_bb(i,j,a,p) & - ERI_bb(a,p,i,j)*ERI_bb(i,j,p,a) kappa = 1d0 - exp(-2d0*eps**2*s) num = kappa*num SigC(p,2) = SigC(p,2) + num*eps/(eps**2 + eta**2) Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do ! Removal part: ab do i=nC(1)+1,nO(1) do a=nO(1)+1,nBas-nR(1) do j=nC(2)+1,nO(2) eps = eGF2(p,2) + eHF(a,1) - eHF(i,1) - eHF(j,2) num = ERI_ab(a,p,i,j)*ERI_ab(i,j,a,p) kappa = 1d0 - exp(-2d0*eps**2*s) num = kappa*num SigC(p,2) = SigC(p,2) + num*eps/(eps**2 + eta**2) Z(p,2) = Z(p,2) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do end do Z(:,:) = 1d0/(1d0 - Z(:,:)) end subroutine