double precision function dSigmaC(x,w,eta,nBas,nC,nO,nV,nR,nS,e,Omega,rho,regularize) ! Compute the derivative of the correlation part of the self-energy implicit none include 'parameters.h' ! Input variables integer,intent(in) :: x double precision,intent(in) :: w double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: e(nBas) double precision,intent(in) :: Omega(nS) double precision,intent(in) :: rho(nBas,nBas,nS) logical,intent(in) :: regularize ! Local variables integer :: i,j,a,b,p,jb double precision :: eps double precision :: Dpijb,Dpajb ! Initialize dSigmaC = 0d0 if (regularize) then ! Occupied part of the correlation self-energy do i=nC+1,nO do jb=1,nS eps = w - e(i) + Omega(jb) Dpijb = e(p) - e(i) + Omega(jb) dSigmaC = dSigmaC - 2d0*rho(p,i,jb)**2*(1d0-exp(-2*eta*Dpijb*Dpijb))/(eps**2) enddo enddo ! Virtual part of the correlation self-energy do a=nO+1,nBas-nR do jb=1,nS eps = w - e(a) - Omega(jb) Dpajb = e(p) - e(a) - Omega(jb) dSigmaC = dSigmaC - 2d0*rho(p,a,jb)**2*(1d0-exp(-2*eta*Dpajb*Dpajb))/(eps**2) enddo enddo else ! Occupied part of the correlation self-energy do i=nC+1,nO jb = 0 do j=nC+1,nO do b=nO+1,nBas-nR jb = jb + 1 eps = w - e(i) + Omega(jb) dSigmaC = dSigmaC - 2d0*rho(x,i,jb)**2*(eps**2 - eta**2)/(eps**2 + eta**2)**2 enddo enddo enddo ! Virtual part of the correlation self-energy do a=nO+1,nBas-nR jb = 0 do j=nC+1,nO do b=nO+1,nBas-nR jb = jb + 1 eps = w - e(a) - Omega(jb) dSigmaC = dSigmaC - 2d0*rho(x,a,jb)**2*(eps**2 - eta**2)/(eps**2 + eta**2)**2 enddo enddo enddo end if end function dSigmaC