subroutine qsGTeh(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE,BSE2,TDA_T,TDA, & dBSE,dTDA,evDyn,singlet,triplet,eta,regularize,nNuc,ZNuc,rNuc,ENuc,nBas,nC,nO,nV,nR,nS,ERHF, & S,X,T,V,Hc,ERI_AO,ERI_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF) ! Perform a quasiparticle self-consistent GTeh calculation implicit none include 'parameters.h' ! Input variables integer,intent(in) :: maxSCF integer,intent(in) :: max_diis double precision,intent(in) :: thresh logical,intent(in) :: doACFDT logical,intent(in) :: exchange_kernel logical,intent(in) :: doXBS logical,intent(in) :: BSE logical,intent(in) :: BSE2 logical,intent(in) :: TDA_T logical,intent(in) :: TDA logical,intent(in) :: dBSE logical,intent(in) :: dTDA logical,intent(in) :: evDyn logical,intent(in) :: singlet logical,intent(in) :: triplet double precision,intent(in) :: eta logical,intent(in) :: regularize integer,intent(in) :: nNuc double precision,intent(in) :: ZNuc(nNuc) double precision,intent(in) :: rNuc(nNuc,ncart) double precision,intent(in) :: ENuc integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: ERHF double precision,intent(in) :: eHF(nBas) double precision,intent(in) :: cHF(nBas,nBas) double precision,intent(in) :: PHF(nBas,nBas) double precision,intent(in) :: S(nBas,nBas) double precision,intent(in) :: T(nBas,nBas) double precision,intent(in) :: V(nBas,nBas) double precision,intent(in) :: Hc(nBas,nBas) double precision,intent(in) :: X(nBas,nBas) double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas) double precision,intent(inout):: ERI_MO(nBas,nBas,nBas,nBas) double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart) double precision,intent(in) :: dipole_int_MO(nBas,nBas,ncart) ! Local variables integer :: nSCF integer :: nBasSq integer :: ispin integer :: n_diis double precision :: ET double precision :: EV double precision :: EJ double precision :: Ex double precision :: EqsGT double precision :: EcRPA double precision :: EcBSE(nspin) double precision :: EcAC(nspin) double precision :: EcGM double precision :: Conv double precision :: rcond double precision,external :: trace_matrix double precision :: dipole(ncart) logical :: print_T = .true. double precision,allocatable :: error_diis(:,:) double precision,allocatable :: F_diis(:,:) double precision,allocatable :: OmRPA(:) double precision,allocatable :: XpY_RPA(:,:) double precision,allocatable :: XmY_RPA(:,:) double precision,allocatable :: rhoL_RPA(:,:,:) double precision,allocatable :: rhoR_RPA(:,:,:) double precision,allocatable :: c(:,:) double precision,allocatable :: cp(:,:) double precision,allocatable :: eGT(:) double precision,allocatable :: eOld(:) double precision,allocatable :: P(:,:) double precision,allocatable :: F(:,:) double precision,allocatable :: Fp(:,:) double precision,allocatable :: J(:,:) double precision,allocatable :: K(:,:) double precision,allocatable :: SigC(:,:) double precision,allocatable :: SigCp(:,:) double precision,allocatable :: SigCm(:,:) double precision,allocatable :: Z(:) double precision,allocatable :: error(:,:) ! Hello world write(*,*) write(*,*)'************************************************' write(*,*)'| Self-consistent qsGTeh calculation |' write(*,*)'************************************************' write(*,*) ! Warning write(*,*) '!! ERIs in MO basis will be overwritten in qsGTeh !!' write(*,*) ! Stuff nBasSq = nBas*nBas ! TDA for T if(TDA_T) then write(*,*) 'Tamm-Dancoff approximation for dynamic screening!' write(*,*) end if ! TDA if(TDA) then write(*,*) 'Tamm-Dancoff approximation activated!' write(*,*) end if ! Memory allocation allocate(eGT(nBas),eOld(nBas),c(nBas,nBas),cp(nBas,nBas),P(nBas,nBas),F(nBas,nBas),Fp(nBas,nBas), & J(nBas,nBas),K(nBas,nBas),SigC(nBas,nBas),SigCp(nBas,nBas),SigCm(nBas,nBas),Z(nBas), & OmRPA(nS),XpY_RPA(nS,nS),XmY_RPA(nS,nS),rhoL_RPA(nBas,nBas,nS),rhoR_RPA(nBas,nBas,nS), & error(nBas,nBas),error_diis(nBasSq,max_diis),F_diis(nBasSq,max_diis)) ! Initialization nSCF = -1 n_diis = 0 ispin = 2 Conv = 1d0 P(:,:) = PHF(:,:) eGT(:) = eHF(:) eOld(:) = eHF(:) c(:,:) = cHF(:,:) F_diis(:,:) = 0d0 error_diis(:,:) = 0d0 rcond = 0d0 !------------------------------------------------------------------------ ! Main loop !------------------------------------------------------------------------ do while(Conv > thresh .and. nSCF <= maxSCF) ! Increment nSCF = nSCF + 1 ! Buid Coulomb matrix call Coulomb_matrix_AO_basis(nBas,P,ERI_AO,J) ! Compute exchange part of the self-energy call exchange_matrix_AO_basis(nBas,P,ERI_AO,K) ! AO to MO transformation of two-electron integrals call AOtoMO_integral_transform(1,1,1,1,nBas,c,ERI_AO,ERI_MO) ! Compute linear response call linear_response(ispin,.false.,TDA_T,eta,nBas,nC,nO,nV,nR,nS,1d0,eGT,ERI_MO, & EcRPA,OmRPA,XpY_RPA,XmY_RPA) if(print_T) call print_excitation('RPA@qsGTeh ',ispin,nS,OmRPA) ! Compute correlation part of the self-energy call GTeh_excitation_density(nBas,nC,nO,nR,nS,ERI_MO,XpY_RPA,XmY_RPA,rhoL_RPA,rhoR_RPA) if(regularize) then ! call regularized_self_energy_correlation(eta,nBas,nC,nO,nV,nR,nS,eGT,OmRPA,rhoL_RPA,rhoR_RPA,EcGM,SigC) ! call regularized_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS,eGT,OmRPA,rhoL_RPA,rhoR_RPA,Z) else call GTeh_self_energy(eta,nBas,nC,nO,nV,nR,nS,eGT,OmRPA,rhoL_RPA,rhoR_RPA,EcGM,SigC) call GTeh_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS,eGT,OmRPA,rhoL_RPA,rhoR_RPA,Z) endif ! Make correlation self-energy Hermitian and transform it back to AO basis SigCp = 0.5d0*(SigC + transpose(SigC)) SigCm = 0.5d0*(SigC - transpose(SigC)) call MOtoAO_transform(nBas,S,c,SigCp) ! Solve the quasi-particle equation F(:,:) = Hc(:,:) + J(:,:) + 0.5d0*K(:,:) + SigCp(:,:) ! Compute commutator and convergence criteria error = matmul(F,matmul(P,S)) - matmul(matmul(S,P),F) ! DIIS extrapolation if(max_diis > 1) then n_diis = min(n_diis+1,max_diis) call DIIS_extrapolation(rcond,nBasSq,nBasSq,n_diis,error_diis,F_diis,error,F) end if ! Diagonalize Hamiltonian in AO basis Fp = matmul(transpose(X),matmul(F,X)) cp(:,:) = Fp(:,:) call diagonalize_matrix(nBas,cp,eGT) c = matmul(X,cp) SigCp = matmul(transpose(c),matmul(SigCp,c)) ! Compute new density matrix in the AO basis P(:,:) = 2d0*matmul(c(:,1:nO),transpose(c(:,1:nO))) ! Save quasiparticles energy for next cycle Conv = maxval(abs(error)) eOld(:) = eGT(:) !------------------------------------------------------------------------ ! Compute total energy !------------------------------------------------------------------------ ! Kinetic energy ET = trace_matrix(nBas,matmul(P,T)) ! Potential energy EV = trace_matrix(nBas,matmul(P,V)) ! Coulomb energy EJ = 0.5d0*trace_matrix(nBas,matmul(P,J)) ! Exchange energy Ex = 0.25d0*trace_matrix(nBas,matmul(P,K)) ! Total energy EqsGT = ET + EV + EJ + Ex ! Print results call dipole_moment(nBas,P,nNuc,ZNuc,rNuc,dipole_int_AO,dipole) call print_qsGTeh(nBas,nO,nSCF,Conv,thresh,eHF,eGT,c,SigCp,Z,ENuc,ET,EV,EJ,Ex,EcGM,EcRPA,EqsGT,dipole) enddo !------------------------------------------------------------------------ ! End main loop !------------------------------------------------------------------------ ! Did it actually converge? if(nSCF == maxSCF+1) then write(*,*) write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,*)' Convergence failed ' write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,*) stop endif ! Deallocate memory deallocate(c,cp,P,F,Fp,J,K,SigC,SigCp,SigCm,Z,OmRPA,XpY_RPA,XmY_RPA,rhoL_RPA,rhoR_RPA,error,error_diis,F_diis) ! Perform BSE calculation ! if(BSE) then ! call Bethe_Salpeter(BSE2,TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO, & ! eGW,eGW,EcBSE) ! if(exchange_kernel) then ! EcBSE(1) = 0.5d0*EcBSE(1) ! EcBSE(2) = 1.5d0*EcBSE(2) ! end if ! write(*,*) ! write(*,*)'-------------------------------------------------------------------------------' ! write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy (singlet) =',EcBSE(1) ! write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy (triplet) =',EcBSE(2) ! write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy =',EcBSE(1) + EcBSE(2) ! write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW total energy =',ENuc + EqsGW + EcBSE(1) + EcBSE(2) ! write(*,*)'-------------------------------------------------------------------------------' ! write(*,*) ! Compute the BSE correlation energy via the adiabatic connection ! if(doACFDT) then ! write(*,*) '------------------------------------------------------' ! write(*,*) 'Adiabatic connection version of BSE correlation energy' ! write(*,*) '------------------------------------------------------' ! write(*,*) ! if(doXBS) then ! write(*,*) '*** scaled screening version (XBS) ***' ! write(*,*) ! end if ! call ACFDT(exchange_kernel,doXBS,.true.,TDA_T,TDA,BSE,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,eGW,eGW,EcAC) ! write(*,*) ! write(*,*)'-------------------------------------------------------------------------------' ! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy (singlet) =',EcAC(1) ! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy (triplet) =',EcAC(2) ! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy =',EcAC(1) + EcAC(2) ! write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW total energy =',ENuc + EqsGW + EcAC(1) + EcAC(2) ! write(*,*)'-------------------------------------------------------------------------------' ! write(*,*) ! end if ! end if end subroutine