subroutine QP_graph_GT(eta,nBas,nC,nO,nV,nR,nOO,nVV,eHF,Omega1,rho1,Omega2,rho2,eGTlin,eGT) implicit none include 'parameters.h' ! Iput variables integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nOO integer,intent(in) :: nVV double precision,intent(in) :: eta double precision,intent(in) :: eHF(nBas) double precision,intent(in) :: Omega1(nVV) double precision,intent(in) :: rho1(nBas,nBas,nVV) double precision,intent(in) :: Omega2(nOO) double precision,intent(in) :: rho2(nBas,nBas,nOO) double precision,intent(in) :: eGTlin(nBas) ! Local variables integer :: p integer :: nIt integer,parameter :: maxIt = 64 double precision,parameter :: thresh = 1d-6 double precision,external :: SigmaC_GT,dSigmaC_GT double precision :: sigC,dsigC double precision :: f,df double precision :: w ! Output variables double precision,intent(out) :: eGT(nBas) sigC = 0d0 dsigC = 0d0 ! Run Newton's algorithm to find the root do p=nC+1,nBas-nR write(*,*) '-----------------' write(*,'(A10,I3)') 'Orbital ',p write(*,*) '-----------------' w = eGTlin(p) write(*,*) 'HERE', eGTlin(p), eHF(p) nIt = 0 f = 1d0 write(*,'(A3,I3,A1,1X,3F15.9)') 'It.',nIt,':',w*HaToeV,f do while (abs(f) > thresh .and. nIt < maxIt) nIt = nIt + 1 sigC = SigmaC_GT(p,w,eta,nBas,nC,nO,nV,nR,nOO,nVV,eHF,Omega1,rho1,Omega2,rho2) dsigC = dSigmaC_GT(p,w,eta,nBas,nC,nO,nV,nR,nOO,nVV,eHF,Omega1,rho1,Omega2,rho2) write (*,*) sigC f = w - eHF(p) - sigC df = 1d0 - dsigC w = w - f/df write(*,'(A3,I3,A1,1X,3F15.9)') 'It.',nIt,':',w*HaToeV,f,sigC end do if(nIt == maxIt) then write(*,*) 'Newton root search has not converged!' else eGT(p) = w write(*,'(A32,F16.10)') 'Quasiparticle energy (eV) ',eGT(p)*HaToeV write(*,*) end if end do end subroutine QP_graph_GT