subroutine regularized_self_energy_GF2_diag(eta,nBas,nC,nO,nV,nR,nS,eHF,eGF2,ERI,SigC,Z) ! Compute diagonal part of the GF2 self-energy and its renormalization factor implicit none include 'parameters.h' ! Input variables double precision,intent(in) :: eta integer,intent(in) :: nBas,nC,nO,nV,nR,nS double precision,intent(in) :: eHF(nBas) double precision,intent(in) :: eGF2(nBas) double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) ! Local variables integer :: i,j,a,b integer :: p double precision :: eps double precision :: num double precision :: kappa double precision :: fk,dfk ! Output variables double precision,intent(out) :: SigC(nBas) double precision,intent(out) :: Z(nBas) ! Initialize SigC(:) = 0d0 Z(:) = 0d0 !-----------------------------------------! ! Parameters for regularized calculations ! !-----------------------------------------! kappa = 1d0 !----------------------------------------------------! ! Compute GF2 self-energy and renormalization factor ! !----------------------------------------------------! do p=nC+1,nBas-nR do i=nC+1,nO do j=nC+1,nO do a=nO+1,nBas-nR eps = eGF2(p) + eHF(a) - eHF(i) - eHF(j) num = (2d0*ERI(p,a,i,j) - ERI(p,a,j,i))*ERI(p,a,i,j) fk = (1d0 - exp(-2d0*eps**2/kappa**2))/eps dfk = - fk/eps + 4d0*kappa**2*exp(-2d0*eps**2/kappa**2) SigC(p) = SigC(p) + num*fk Z(p) = Z(p) - num*dfk end do end do end do end do do p=nC+1,nBas-nR do i=nC+1,nO do a=nO+1,nBas-nR do b=nO+1,nBas-nR eps = eGF2(p) + eHF(i) - eHF(a) - eHF(b) num = (2d0*ERI(p,i,a,b) - ERI(p,i,b,a))*ERI(p,i,a,b) fk = (1d0 - exp(-2d0*eps**2/kappa**2))/eps dfk = - fk/eps + 4d0*kappa**2*exp(-2d0*eps**2/kappa**2) SigC(p) = SigC(p) + num*fk Z(p) = Z(p) - num*dfk end do end do end do end do Z(:) = 1d0/(1d0 - Z(:)) end subroutine regularized_self_energy_GF2_diag