subroutine ULYP_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc) ! Compute LYP correlation potential implicit none include 'parameters.h' ! Input variables integer,intent(in) :: nGrid double precision,intent(in) :: weight(nGrid) integer,intent(in) :: nBas double precision,intent(in) :: AO(nBas,nGrid) double precision,intent(in) :: dAO(ncart,nBas,nGrid) double precision,intent(in) :: rho(nGrid,nspin) double precision,intent(in) :: drho(ncart,nGrid,nspin) ! Local variables integer :: mu,nu,iG double precision :: vAO,gaAO,gbAO double precision :: ra,rb,r double precision :: ga,gab,gb,g double precision :: dfdra,dfdrb double precision :: fdga,dfdgb double precision :: doda,dodb,ddda,dddb double precision :: a,b,c,d double precision :: Cf,omega,delta ! Output variables double precision,intent(out) :: Fc(nBas,nBas,nspin) ! Prameter of the functional a = 0.04918d0 b = 0.132d0 c = 0.2533d0 d = 0.349d0 Cf = 3d0/10d0*(3d0*pi**2)**(2d0/3d0) ! Compute matrix elements in the AO basis Fc(:,:,:) = 0d0 do mu=1,nBas do nu=1,nBas do iG=1,nGrid ra = max(0d0,rho(iG,1)) rb = max(0d0,rho(iG,2)) r = ra + rb if(r > threshold) then ga = drho(1,iG,1)**2 + drho(2,iG,1)**2 + drho(3,iG,1)**2 gb = drho(1,iG,2)**2 + drho(2,iG,2)**2 + drho(3,iG,2)**2 gab = drho(1,iG,1)*drho(1,iG,2) + drho(2,iG,1)*drho(2,iG,2) + drho(3,iG,1)*drho(3,iG,2) g = ga + gab + gb omega = exp(-c*r**(-1d0/3d0))/(1d0 + d*r**(-1d0/3d0))*r**(-11d0/3d0) delta = c*r**(-1d0/3d0) + d*r**(-1d0/3d0)/(1d0 + d*r**(-1d0/3d0)) vAO = weight(iG)*AO(mu,iG)*AO(nu,iG) doda = (d/(3d0*r**(4d0/3d0)*(1d0 + d*r**(-1d0/3d0)) + c/(3d0*r**(4d0/3d0)) - 11d0/(3d0*r))*omega dodb = doda ddda = - c/3d0*r**(-4d0/3d0) + d**2/(3d0*(1d0 + d*r**(-1d0/3d0))**2)*r**(-5d0/3d0) * - d/(3d0*(1d0 + d*r**(-1d0/3d0))*r**(-4d0/3d0) dddb = ddda Fc(mu,nu,1) = Fc(mu,nu,1) + vAO*dfdra Fc(mu,nu,2) = Fc(mu,nu,2) + vAO*dfdrb gaAO = drho(1,iG,1)*(dAO(1,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(1,nu,iG)) & + drho(2,iG,1)*(dAO(2,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(2,nu,iG)) & + drho(3,iG,1)*(dAO(3,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(3,nu,iG)) gaAO = weight(iG)*gaAO gbAO = drho(1,iG,2)*(dAO(1,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(1,nu,iG)) & + drho(2,iG,2)*(dAO(2,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(2,nu,iG)) & + drho(3,iG,2)*(dAO(3,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(3,nu,iG)) gbAO = weight(iG)*gbAO dfdga = -a*b*omega*(-rb**2 + 2d0/3d0*r**2 + ra*rb*( - 5d0/2d0 - (delta-11d0)/9d0*ra/r + delta/18d0)) dfdgb = -a*b*omega*(-ra**2 + 2d0/3d0*r**2 + ra*rb*( - 5d0/2d0 - (delta-11d0)/9d0*rb/r + delta/18d0)) Fc(mu,nu,1) = Fc(mu,nu,1) + 2d0*gaAO*dfdga Fc(mu,nu,2) = Fc(mu,nu,2) + 2d0*gbAO*dfdgb end if end do end do end do end subroutine ULYP_gga_correlation_potential