subroutine ufG0W0(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF,TDA_W) ! Unfold G0W0 equations implicit none include 'parameters.h' ! Input variables integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: ENuc double precision,intent(in) :: ERHF double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) double precision,intent(in) :: eHF(nBas) logical,intent(in) :: TDA_W ! Local variables integer :: p integer :: s integer :: i,j,k,l integer :: a,b,c,d integer :: jb,kc,ia,ja integer :: klc,kcd,ija,ijb,iab,jab integer :: ispin double precision :: EcRPA integer :: n2h1p,n2p1h,nH double precision,external :: Kronecker_delta double precision,allocatable :: H(:,:) double precision,allocatable :: cGW(:,:) double precision,allocatable :: eGW(:) double precision,allocatable :: Z(:) double precision,allocatable :: OmRPA(:) double precision,allocatable :: XpY_RPA(:,:) double precision,allocatable :: XmY_RPA(:,:) double precision,allocatable :: rho_RPA(:,:,:) logical :: verbose = .true. double precision,parameter :: cutoff1 = 0.0d0 double precision,parameter :: cutoff2 = 0.01d0 ! Output variables ! Hello world write(*,*) write(*,*)'**********************************************' write(*,*)'| Unfolded G0W0 calculation |' write(*,*)'**********************************************' write(*,*) ! Dimension of the supermatrix n2h1p = nO*nO*nV n2p1h = nV*nV*nO nH = 1 + n2h1p + n2p1h ! Memory allocation allocate(H(nH,nH),cGW(nH,nH),eGW(nH),Z(nH)) ! Initialization H(:,:) = 0d0 p=nO !Compute only the HOMO! if (TDA_W) then ! TDA for W write(*,*) 'Tamm-Dancoff approximation' write(*,*) 'No need to compute RPA quantities first' write(*,*) !---------------------------! ! Compute GW supermatrix ! !---------------------------! ! ! ! | F V2h1p V2p1h | ! ! | | ! ! H = | V2h1p C2h1p 0 | ! ! | | ! ! | V2p1h 0 C2p1h | ! ! ! !---------------------------! !-------------! ! Block C2h1p ! !-------------! ija = 0 do i=nC+1,nO do j=nC+1,nO do a=nO+1,nBas-nR ija = ija + 1 klc = 0 do k=nC+1,nO do l=nC+1,nO do c=nO+1,nBas-nR klc = klc + 1 H(1+ija,1+klc) & = ((eHF(i) + eHF(j) - eHF(a))*Kronecker_delta(j,l)*Kronecker_delta(a,c) & - 2d0*ERI(j,c,a,l))*Kronecker_delta(i,k) end do end do end do end do end do end do !-------------! ! Block C2p1h ! !-------------! iab = 0 do i=nC+1,nO do a=nO+1,nBas-nR do b=nO+1,nBas-nR iab = iab + 1 kcd = 0 do k=nC+1,nO do c=nO+1,nBas-nR do d=nO+1,nBas-nR kcd = kcd + 1 H(1+n2h1p+iab,1+n2h1p+kcd) & = ((eHF(a) + eHF(b) - eHF(i))*Kronecker_delta(i,k)*Kronecker_delta(a,c) & + 2d0*ERI(a,k,i,c))*Kronecker_delta(b,d) end do end do end do end do end do end do !---------! ! Block F ! !---------! H(1,1) = eHF(p) !-------------! ! Block V2h1p ! !-------------! klc = 0 do k=nC+1,nO do l=nC+1,nO do c=nO+1,nBas-nR klc = klc + 1 H(1 ,1+klc) = sqrt(2d0)*ERI(p,c,k,l) H(1+klc,1 ) = sqrt(2d0)*ERI(p,c,k,l) end do end do end do !-------------! ! Block V2p1h ! !-------------! kcd = 0 do k=nC+1,nO do c=nO+1,nBas-nR do d=nO+1,nBas-nR kcd = kcd + 1 H(1 ,1+n2h1p+kcd) = sqrt(2d0)*ERI(p,k,d,c) H(1+n2h1p+kcd,1 ) = sqrt(2d0)*ERI(p,k,d,c) end do end do end do else ! No TDA for W write(*,*) 'NO Tamm-Dancoff approximation' write(*,*) 'A prior RPA calculation will be done' write(*,*) !---------------------------! ! Compute GW supermatrix ! !---------------------------! ! ! ! | F W2h1p W2p1h | ! ! | | ! ! H = | W2h1p D2h1p 0 | ! ! | | ! ! | W2p1h 0 D2p1h | ! ! ! !---------------------------! ! Memory allocation ! allocate(OmRPA(nS),XpY_RPA(nS,nS),XmY_RPA(nS,nS),rho_RPA(nBas,nBas,nS)) ! Spin manifold ispin = 1 !-------------------! ! Compute screening ! !-------------------! call linear_response(ispin,.true.,TDA_W,0d0,nBas,nC,nO,nV,nR,nS,1d0, & eHF,ERI,EcRPA,OmRPA,XpY_RPA,XmY_RPA) !--------------------------! ! Compute spectral weights ! !--------------------------! call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_RPA,rho_RPA) !---------! ! Block F ! !---------! H(1,1) = eHF(p) !-------------! ! Block D2h1p ! !-------------! ija = 0 do i=nC+1,nO do ja=1,nS ija = ija + 1 H(1+ija,1+ija) = eHF(i) - OmRPA(ja) end do end do !-------------! ! Block W2h1p ! !-------------! ija = 0 do i=nC+1,nO do ja=1,nS ija = ija + 1 H(1 ,1+ija) = sqrt(2d0)*rho_RPA(p,i,ja) H(1+ija,1 ) = sqrt(2d0)*rho_RPA(p,i,ja) end do end do !-------------! ! Block D2h1p ! !-------------! iab = 0 do b=nO+1,nBas-nR ia = 0 do i=nC+1,nO do a=nO+1,nBas-nR ia = ia + 1 iab = iab + 1 H(1+n2h1p+iab,1+n2h1p+iab) = eHF(b) + OmRPA(ia) end do end do end do !-------------! ! Block W2p1h ! !-------------! iab = 0 do b=nO+1,nBas-nR ia = 0 do i=nC+1,nO do a=nO+1,nBas-nR ia = ia + 1 iab = iab + 1 H(1 ,1+n2h1p+iab) = sqrt(2d0)*rho_RPA(p,b,ia) H(1+n2h1p+iab,1 ) = sqrt(2d0)*rho_RPA(p,b,ia) end do end do end do end if !-------------------------! ! Diagonalize supermatrix ! !-------------------------! cGW(:,:) = H(:,:) call diagonalize_matrix(nH,cGW,eGW) !-----------------! ! Compute weights ! !-----------------! do s=1,nH Z(s) = cGW(1,s)**2 end do !--------------! ! Dump results ! !--------------! write(*,*)'-------------------------------------------' write(*,'(A35,I3)')' G0W0 energies (eV) for orbital ',p write(*,*)'-------------------------------------------' write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X)') & '|','#','|','e_QP (eV)','|','Z','|' write(*,*)'-------------------------------------------' do s=1,nH write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') & '|',s,'|',eGW(s)*HaToeV,'|',Z(s),'|' enddo write(*,*)'-------------------------------------------' write(*,*) if(verbose) then do s=1,nH if(Z(s) > cutoff1) then write(*,*)'*************************************************************' write(*,'(1X,A20,I3,A6,I3)')'Vector for orbital ',p,' and #',s write(*,'(1X,A7,F10.6,A13,F10.6,1X)')' e_QP = ',eGW(s)*HaToeV,' eV and Z = ',Z(s) write(*,*)'*************************************************************' write(*,'(1X,A20,1X,A20,1X,A15,1X)') & ' Configuration ',' Coefficient ',' Weight ' write(*,*)'*************************************************************' if(p <= nO) & write(*,'(1X,A7,I3,A16,1X,F15.6,1X,F15.6)') & ' (',p,') ',cGW(1,s),cGW(1,s)**2 if(p > nO) & write(*,'(1X,A16,I3,A7,1X,F15.6,1X,F15.6)') & ' (',p,') ',cGW(1,s),cGW(1,s)**2 klc = 0 do k=nC+1,nO do l=nC+1,nO do c=nO+1,nBas-nR klc = klc + 1 if(abs(cGW(1+klc,s)) > cutoff2) & write(*,'(1X,A3,I3,A1,I3,A6,I3,A7,1X,F15.6,1X,F15.6)') & ' (',k,',',l,') -> (',c,') ',cGW(1+klc,s),cGW(1+klc,s)**2 end do end do end do kcd = 0 do k=nC+1,nO do c=nO+1,nBas-nR do d=nO+1,nBas-nR kcd = kcd + 1 if(abs(cGW(1+n2h1p+kcd,s)) > cutoff2) & write(*,'(1X,A7,I3,A6,I3,A1,I3,A3,1X,F15.6,1X,F15.6)') & ' (',k,') -> (',c,',',d,') ',cGW(1+n2h1p+kcd,s),cGW(1+n2h1p+kcd,s)**2 end do end do end do write(*,*)'*************************************************************' write(*,*) end if end do end if end subroutine ufG0W0