subroutine TDHF(singlet_manifold,triplet_manifold,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,e) ! Perform random phase approximation calculation implicit none include 'parameters.h' include 'quadrature.h' ! Input variables logical,intent(in) :: singlet_manifold logical,intent(in) :: triplet_manifold integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: ENuc double precision,intent(in) :: ERHF double precision,intent(in) :: e(nBas) double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) ! Local variables logical :: dRPA logical :: TDA logical :: BSE integer :: ispin double precision,allocatable :: Omega(:,:) double precision,allocatable :: XpY(:,:,:) double precision :: rho double precision :: EcRPA(nspin) logical :: AC integer :: iAC double precision :: lambda double precision,allocatable :: EcACRPA(:,:) double precision,allocatable :: EcAC(:,:) ! Hello world write(*,*) write(*,*)'************************************************' write(*,*)'| Time-dependent Hartree-Fock calculation |' write(*,*)'************************************************' write(*,*) ! Initialization EcRPA(:) = 0d0 ! Switch on exchange for TDHF dRPA = .false. ! Switch off Tamm-Dancoff approximation for TDHF TDA = .false. ! Switch off Bethe-Salpeter equation for TDHF BSE = .false. ! Memory allocation allocate(Omega(nS,nspin),XpY(nS,nS,nspin)) AC = .true. allocate(EcACRPA(nAC,nspin),EcAC(nAC,nspin)) ! Singlet manifold if(singlet_manifold) then ispin = 1 call linear_response(ispin,dRPA,TDA,BSE,nBas,nC,nO,nV,nR,nS,1d0,e,ERI,rho, & EcRPA(ispin),Omega(:,ispin),XpY(:,:,ispin)) call print_excitation('TDHF ',ispin,nS,Omega(:,ispin)) endif ! Triplet manifold if(triplet_manifold) then ispin = 2 call linear_response(ispin,dRPA,TDA,BSE,nBas,nC,nO,nV,nR,nS,1d0,e,ERI,rho, & EcRPA(ispin),Omega(:,ispin),XpY(:,:,ispin)) call print_excitation('TDHF ',ispin,nS,Omega(:,ispin)) endif write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A40,F15.6)') 'RPA@TDHF correlation energy (singlet) =',EcRPA(1) write(*,'(2X,A40,F15.6)') 'RPA@TDHF correlation energy (triplet) =',EcRPA(2) write(*,'(2X,A40,F15.6)') 'RPA@TDHF correlation energy =',EcRPA(1) + EcRPA(2) write(*,'(2X,A40,F15.6)') 'RPA@TDHF total energy =',ENuc + ERHF + EcRPA(1) + EcRPA(2) write(*,*)'-------------------------------------------------------------------------------' write(*,*) ! Compute the correlation energy via the adiabatic connection if(AC) then write(*,*) '------------------------------------------------------' write(*,*) 'Adiabatic connection version of RPA correlation energy' write(*,*) '------------------------------------------------------' write(*,*) if(singlet_manifold) then ispin = 1 EcACRPA(:,ispin) = 0d0 write(*,*) '--------------' write(*,*) 'Singlet states' write(*,*) '--------------' write(*,*) write(*,*) '-----------------------------------------------------------------------------------' write(*,'(2X,A15,1X,A30,1X,A30)') 'lambda','EcRPA(lambda)','Tr(V x P_lambda)' write(*,*) '-----------------------------------------------------------------------------------' do iAC=1,nAC lambda = rAC(iAC) ! call linear_response(ispin,dRPA,TDA,.false.,nBas,nC,nO,nV,nR,nS,lambda,eHF,ERI, & ! rho(:,:,:,ispin),EcRPA(ispin),Omega(:,ispin),XpY(:,:,ispin)) ! call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY(:,:,ispin),rho(:,:,:,ispin)) call linear_response(ispin,dRPA,TDA,BSE,nBas,nC,nO,nV,nR,nS,lambda,e,ERI, & rho,EcACRPA(iAC,ispin),Omega(:,ispin),XpY(:,:,ispin)) call Ec_AC(ispin,dRPA,nBas,nC,nO,nV,nR,nS,ERI,XpY(:,:,ispin),EcAC(iAC,ispin)) write(*,'(2X,F15.6,1X,F30.15,1X,F30.15)') lambda,EcACRPA(iAC,ispin),EcAC(iAC,ispin) end do write(*,*) '-----------------------------------------------------------------------------------' write(*,'(2X,A50,1X,F15.6)') ' Ec(RPA) via Gauss-Legendre quadrature:',0.5d0*dot_product(wAC,EcAC(:,ispin)) write(*,*) '-----------------------------------------------------------------------------------' write(*,*) end if if(triplet_manifold) then ispin = 2 EcACRPA(:,ispin) = 0d0 write(*,*) '--------------' write(*,*) 'Triplet states' write(*,*) '--------------' write(*,*) write(*,*) '-----------------------------------------------------------------------------------' write(*,'(2X,A15,1X,A30,1X,A30)') 'lambda','EcRPA(lambda)','Tr(V x P_lambda)' write(*,*) '-----------------------------------------------------------------------------------' do iAC=1,nAC lambda = rAC(iAC) ! call linear_response(ispin,dRPA,TDA,.false.,nBas,nC,nO,nV,nR,nS,lambda,eHF,ERI, & ! rho(:,:,:,ispin),EcRPA(ispin),Omega(:,ispin),XpY(:,:,ispin)) ! call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY(:,:,ispin),rho(:,:,:,ispin)) call linear_response(ispin,dRPA,TDA,BSE,nBas,nC,nO,nV,nR,nS,lambda,e,ERI, & rho,EcACRPA(iAC,ispin),Omega(:,ispin),XpY(:,:,ispin)) call Ec_AC(ispin,dRPA,nBas,nC,nO,nV,nR,nS,ERI,XpY(:,:,ispin),EcAC(iAC,ispin)) write(*,'(2X,F15.6,1X,F30.15,1X,F30.15)') lambda,EcACRPA(iAC,ispin),EcAC(iAC,ispin) end do write(*,*) '-----------------------------------------------------------------------------------' write(*,'(2X,A50,1X,F15.6)') ' Ec(RPA) via Gauss-Legendre quadrature:',0.5d0*dot_product(wAC,EcAC(:,ispin)) write(*,*) '-----------------------------------------------------------------------------------' write(*,*) end if end if end subroutine TDHF