subroutine URPAx(TDA,doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, & ERI_aaaa,ERI_aabb,ERI_bbbb,dipole_int_aa,dipole_int_bb,e,c,S) ! Perform random phase approximation calculation with exchange (aka TDHF) in the unrestricted formalism implicit none include 'parameters.h' include 'quadrature.h' ! Input variables logical,intent(in) :: TDA logical,intent(in) :: doACFDT logical,intent(in) :: exchange_kernel logical,intent(in) :: spin_conserved logical,intent(in) :: spin_flip integer,intent(in) :: nBas integer,intent(in) :: nC(nspin) integer,intent(in) :: nO(nspin) integer,intent(in) :: nV(nspin) integer,intent(in) :: nR(nspin) integer,intent(in) :: nS(nspin) double precision,intent(in) :: eta double precision,intent(in) :: ENuc double precision,intent(in) :: EUHF double precision,intent(in) :: e(nBas,nspin) double precision,intent(in) :: c(nBas,nBas,nspin) double precision,intent(in) :: S(nBas,nBas) double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas) double precision,intent(in) :: dipole_int_aa(nBas,nBas,ncart) double precision,intent(in) :: dipole_int_bb(nBas,nBas,ncart) ! Local variables integer :: ispin integer :: nS_aa,nS_bb,nS_sc double precision,allocatable :: Omega_sc(:) double precision,allocatable :: XpY_sc(:,:) double precision,allocatable :: XmY_sc(:,:) integer :: nS_ab,nS_ba,nS_sf double precision,allocatable :: Omega_sf(:) double precision,allocatable :: XpY_sf(:,:) double precision,allocatable :: XmY_sf(:,:) double precision :: rho_sc,rho_sf double precision :: EcRPAx(nspin) double precision :: EcAC(nspin) ! Hello world write(*,*) write(*,*)'*********************************************************************' write(*,*)'| Unrestricted random phase approximation calculation with exchange |' write(*,*)'*********************************************************************' write(*,*) ! TDA if(TDA) then write(*,*) 'Tamm-Dancoff approximation activated!' write(*,*) ' => RPAx + TDA = CIS ' write(*,*) end if ! Initialization EcRPAx(:) = 0d0 EcAC(:) = 0d0 ! Spin-conserved transitions if(spin_conserved) then ispin = 1 ! Memory allocation nS_aa = nS(1) nS_bb = nS(2) nS_sc = nS_aa + nS_bb allocate(Omega_sc(nS_sc),XpY_sc(nS_sc,nS_sc),XmY_sc(nS_sc,nS_sc)) call unrestricted_linear_response(ispin,.false.,TDA,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,nS_sc,1d0,e, & ERI_aaaa,ERI_aabb,ERI_bbbb,Omega_sc,rho_sc,EcRPAx(ispin),Omega_sc,XpY_sc,XmY_sc) call print_excitation('URPAx ',5,nS_sc,Omega_sc) call print_unrestricted_transition_vectors(ispin,nBas,nC,nO,nV,nR,nS,nS_aa,nS_bb,nS_sc,dipole_int_aa,dipole_int_bb, & c,S,Omega_sc,XpY_sc,XmY_sc) deallocate(Omega_sc,XpY_sc,XmY_sc) endif ! Spin-flip transitions if(spin_flip) then ispin = 2 ! Memory allocation nS_ab = (nO(1) - nC(1))*(nV(2) - nR(2)) nS_ba = (nO(2) - nC(2))*(nV(1) - nR(1)) nS_sf = nS_ab + nS_ba allocate(Omega_sf(nS_sf),XpY_sf(nS_sf,nS_sf),XmY_sf(nS_sf,nS_sf)) call unrestricted_linear_response(ispin,.false.,TDA,.false.,eta,nBas,nC,nO,nV,nR,nS_ab,nS_ba,nS_sf,nS_sf,1d0,e, & ERI_aaaa,ERI_aabb,ERI_bbbb,Omega_sf,rho_sf,EcRPAx(ispin),Omega_sf,XpY_sf,XmY_sf) call print_excitation('URPAx ',6,nS_sf,Omega_sf) call print_unrestricted_transition_vectors(ispin,nBas,nC,nO,nV,nR,nS,nS_ab,nS_ba,nS_sf,dipole_int_aa,dipole_int_bb, & c,S,Omega_sf,XpY_sf,XmY_sf) deallocate(Omega_sf,XpY_sf,XmY_sf) endif if(exchange_kernel) then EcRPAx(1) = 0.5d0*EcRPAx(1) EcRPAx(2) = 0.5d0*EcRPAx(2) else EcRPAx(2) = 0d0 end if write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10)') 'Tr@URPAx correlation energy (spin-conserved) =',EcRPAx(1) write(*,'(2X,A50,F20.10)') 'Tr@URPAx correlation energy (spin-flip) =',EcRPAx(2) write(*,'(2X,A50,F20.10)') 'Tr@URPAx correlation energy =',EcRPAx(1) + EcRPAx(2) write(*,'(2X,A50,F20.10)') 'Tr@URPAx total energy =',ENuc + EUHF + EcRPAx(1) + EcRPAx(2) write(*,*)'-------------------------------------------------------------------------------' write(*,*) ! Compute the correlation energy via the adiabatic connection if(doACFDT) then write(*,*) '----------------------------------------------------------' write(*,*) ' Adiabatic connection version of URPAx correlation energy ' write(*,*) '----------------------------------------------------------' write(*,*) call unrestricted_ACFDT(exchange_kernel,.false.,.false.,.false.,TDA,.false.,spin_conserved,spin_flip,eta, & nBas,nC,nO,nV,nR,nS,ERI_aaaa,ERI_aabb,ERI_bbbb,e,e,EcAC) write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10)') 'AC@URPAx correlation energy (spin-conserved) =',EcAC(1) write(*,'(2X,A50,F20.10)') 'AC@URPAx correlation energy (spin-flip) =',EcAC(2) write(*,'(2X,A50,F20.10)') 'AC@URPAx correlation energy =',EcAC(1) + EcAC(2) write(*,'(2X,A50,F20.10)') 'AC@URPAx total energy =',ENuc + EUHF + EcAC(1) + EcAC(2) write(*,*)'-------------------------------------------------------------------------------' write(*,*) end if end subroutine URPAx