subroutine RCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,Cx_choice) ! Compute the restricted version of the curvature-corrected exchange functional implicit none include 'parameters.h' ! Input variables integer,intent(in) :: nEns double precision,intent(in) :: wEns(nEns) double precision,intent(in) :: aCC_w1(3) double precision,intent(in) :: aCC_w2(3) integer,intent(in) :: nGrid double precision,intent(in) :: weight(nGrid) double precision,intent(in) :: rho(nGrid) integer,intent(in) :: Cx_choice ! Local variables integer :: iG double precision :: r double precision :: a1,b1,c1,w1 double precision :: a2,b2,c2,w2 double precision :: Fx1,Fx2,Cx ! Output variables double precision :: Ex ! Single excitation parameter ! a1 = 0.0d0 ! b1 = 0.0d0 ! c1 = 0.0d0 ! Parameters for H2 at equilibrium ! a2 = +0.5751782560799208d0 ! b2 = -0.021108186591137282d0 ! c2 = -0.36718902716347124d0 ! Parameters for stretch H2 ! a2 = + 0.01922622507087411d0 ! b2 = - 0.01799647558018601d0 ! c2 = - 0.022945430666782573d0 ! Parameters for He ! a2 = 1.9125735895875828d0 ! b2 = 2.715266992840757d0 ! c2 = 2.1634223380633086d0 a1 = aCC_w1(1) b1 = aCC_w1(2) c1 = aCC_w1(3) a2 = aCC_w2(1) b2 = aCC_w2(2) c2 = aCC_w2(3) w1 = wEns(2) Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2) w2 = wEns(3) Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2) select case (Cx_choice) case(1) Cx = CxLDA*Fx1 case(2) Cx = CxLDA*Fx2 case(3) Cx = CxLDA*Fx2*Fx1 case default Cx = CxLDA end select ! Compute GIC-LDA exchange energy Ex = 0d0 do iG=1,nGrid r = max(0d0,rho(iG)) if(r > threshold) then Ex = Ex + weight(iG)*Cx*r**(4d0/3d0) endif enddo end subroutine RCC_lda_exchange_energy