subroutine CC_B88_gga_exchange_potential(nEns,wEns,nCC,aCC,nGrid,weight,nBas,& AO,dAO,rho,drho,Cx_choice,doNcentered,Fx) ! Compute the unrestricted version of the curvature-corrected exchange potential implicit none include 'parameters.h' ! Input variables integer,intent(in) :: nEns double precision,intent(in) :: wEns(nEns) integer,intent(in) :: nCC double precision,intent(in) :: aCC(nCC,nEns-1) integer,intent(in) :: nGrid double precision,intent(in) :: weight(nGrid) integer,intent(in) :: nBas double precision,intent(in) :: AO(nBas,nGrid) double precision,intent(in) :: dAO(3,nBas,nGrid) double precision,intent(in) :: rho(nGrid) double precision,intent(in) :: drho(3,nGrid) integer,intent(in) :: Cx_choice logical,intent(in) :: doNcentered ! Local variables integer :: mu,nu,iG double precision :: b double precision :: vAO,gAO double precision :: r,g,x,dxdr,dxdg,f double precision :: a1,b1,c1,d1,w1 double precision :: a2,b2,c2,d2,w2 double precision :: Fx1,Fx2,Cx ! Output variables double precision,intent(out) :: Fx(nBas,nBas) ! Coefficients for B88 GGA exchange functional b = 0.0042d0 ! Defining enhancements factor for weight-dependent functionals ! Parameters for first state a1 = aCC(1,1) b1 = aCC(2,1) c1 = aCC(3,1) d1 = aCC(4,1) ! Parameters for second state a2 = aCC(1,2) b2 = aCC(2,2) c2 = aCC(3,2) d2 = aCC(4,2) w1 = wEns(2) Fx1 = 1d0 + a1*w1 + b1*w1**2 + c1*w1**3 + d1*w1**4 w2 = wEns(3) Fx2 = 1d0 + a2*w2 + b2*w2**2 + c2*w2**3 + d2*w2**4 select case (Cx_choice) case(1) Cx = Fx1 case(2) Cx = Fx2 case(3) Cx = Fx2*Fx1 case default Cx = 1.d0 end select ! Compute GGA exchange matrix in the AO basis Fx(:,:) = 0d0 do mu=1,nBas do nu=1,nBas do iG=1,nGrid r = max(0d0,rho(iG)) if(r > threshold) then vAO = weight(iG)*AO(mu,iG)*AO(nu,iG) g = drho(1,iG)**2 + drho(2,iG)**2 + drho(3,iG)**2 x = sqrt(g)/r**(4d0/3d0) dxdr = - 4d0*sqrt(g)/(3d0*r**(7d0/3d0))/x dxdg = + 1d0/(2d0*sqrt(g)*r**(4d0/3d0))/x f = b*x**2/(1d0 + 6d0*b*x*asinh(x)) Fx(mu,nu) = Fx(mu,nu) + vAO*( & 4d0/3d0*r**(1d0/3d0)*(CxLSDA - f) & - 2d0*r**(4d0/3d0)*dxdr*f & + r**(4d0/3d0)*dxdr*(6d0*b*x*asinh(x) + 6d0*b*x**2/sqrt(1d0+x**2))*f/(1d0 + 6d0*b*x*asinh(x)) ) gAO = drho(1,iG)*(dAO(1,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(1,nu,iG)) & + drho(2,iG)*(dAO(2,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(2,nu,iG)) & + drho(3,iG)*(dAO(3,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(3,nu,iG)) gAO = weight(iG)*gAO Fx(mu,nu) = Fx(mu,nu) + 2d0*gAO*r**(4d0/3d0)*dxdg*( & - 2d0*f + (6d0*b*x*asinh(x) + 6d0*b*x**2/sqrt(1d0+x**2))*f/(1d0 + 6d0*b*x*asinh(x)) ) end if end do end do end do Fx(:,:) = Cx*Fx(:,:) end subroutine CC_B88_gga_exchange_potential