subroutine unrestricted_ACFDT_correlation_energy(ispin,exchange_kernel,nBas,nC,nO,nV,nR,nS,nSa,nSb,nSt, & ERI_aaaa,ERI_aabb,ERI_bbbb,XpY,XmY,EcAC) ! Compute the correlation energy via the adiabatic connection formula implicit none include 'parameters.h' ! Input variables integer,intent(in) :: ispin logical,intent(in) :: exchange_kernel integer,intent(in) :: nBas integer,intent(in) :: nC(nspin) integer,intent(in) :: nO(nspin) integer,intent(in) :: nV(nspin) integer,intent(in) :: nR(nspin) integer,intent(in) :: nS(nspin) integer,intent(in) :: nSa integer,intent(in) :: nSb integer,intent(in) :: nSt double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas) double precision,intent(in) :: XpY(nSt,nSt) double precision,intent(in) :: XmY(nSt,nSt) ! Local variables integer :: i,j,a,b integer :: ia,jb double precision :: delta_Kx double precision,allocatable :: Ap(:,:) double precision,allocatable :: Bp(:,:) double precision,allocatable :: X(:,:) double precision,allocatable :: Y(:,:) double precision,external :: trace_matrix ! Output variables double precision,intent(out) :: EcAC ! Exchange kernel delta_Kx = 0d0 if(exchange_kernel) delta_Kx = 1d0 ! Memory allocation allocate(Ap(nSt,nSt),Bp(nSt,nSt),X(nSt,nSt),Y(nSt,nSt)) ! Compute Aiajb = (ia|bj) and Biajb = (ia|jb) ! Initialization Ap(:,:) = 0d0 Bp(:,:) = 0d0 !----------------------------------------------- ! Build kernel for spin-conserving transitions !----------------------------------------------- if(ispin == 1) then ! aaaa block ia = 0 do i=nC(1)+1,nO(1) do a=nO(1)+1,nBas-nR(1) ia = ia + 1 jb = 0 do j=nC(1)+1,nO(1) do b=nO(1)+1,nBas-nR(1) jb = jb + 1 Ap(ia,jb) = ERI_aaaa(i,b,a,j) - delta_Kx*ERI_aaaa(i,b,j,a) Bp(ia,jb) = ERI_aaaa(i,j,a,b) - delta_Kx*ERI_aaaa(i,j,b,a) end do end do end do end do ! aabb block ia = 0 do i=nC(1)+1,nO(1) do a=nO(1)+1,nBas-nR(1) ia = ia + 1 jb = 0 do j=nC(2)+1,nO(2) do b=nO(2)+1,nBas-nR(2) jb = jb + 1 Ap(ia,nSa+jb) = ERI_aabb(i,b,a,j) Bp(ia,nSa+jb) = ERI_aabb(i,j,a,b) end do end do end do end do ! bbaa block ia = 0 do i=nC(2)+1,nO(2) do a=nO(2)+1,nBas-nR(2) ia = ia + 1 jb = 0 do j=nC(1)+1,nO(1) do b=nO(1)+1,nBas-nR(1) jb = jb + 1 Ap(nSa+ia,jb) = ERI_aabb(b,i,j,a) Bp(nSa+ia,jb) = ERI_aabb(j,i,b,a) end do end do end do end do ! bbbb block ia = 0 do i=nC(2)+1,nO(2) do a=nO(2)+1,nBas-nR(2) ia = ia + 1 jb = 0 do j=nC(2)+1,nO(2) do b=nO(2)+1,nBas-nR(2) jb = jb + 1 Ap(nSa+ia,nSa+jb) = ERI_bbbb(i,b,a,j) - delta_Kx*ERI_bbbb(i,b,j,a) Bp(nSa+ia,nSa+jb) = ERI_bbbb(i,j,a,b) - delta_Kx*ERI_bbbb(i,j,b,a) end do end do end do end do end if !----------------------------------------------- ! Build A matrix for spin-flip transitions !----------------------------------------------- if(ispin == 2) then ! abab block ia = 0 do i=nC(1)+1,nO(1) do a=nO(2)+1,nBas-nR(2) ia = ia + 1 jb = 0 do j=nC(1)+1,nO(1) do b=nO(2)+1,nBas-nR(2) jb = jb + 1 Ap(ia,jb) = - delta_Kx*ERI_aabb(i,b,j,a) end do end do end do end do ! baba block ia = 0 do i=nC(2)+1,nO(2) do a=nO(1)+1,nBas-nR(1) ia = ia + 1 jb = 0 do j=nC(2)+1,nO(2) do b=nO(1)+1,nBas-nR(1) jb = jb + 1 Ap(nSa+ia,nSa+jb) = - delta_Kx*ERI_aabb(b,i,a,j) end do end do end do end do ! abba block ia = 0 do i=nC(1)+1,nO(1) do a=nO(2)+1,nBas-nR(2) ia = ia + 1 jb = 0 do j=nC(2)+1,nO(2) do b=nO(1)+1,nBas-nR(1) jb = jb + 1 Bp(ia,nSa+jb) = - delta_Kx*ERI_aabb(i,j,b,a) end do end do end do end do ! baab block ia = 0 do i=nC(2)+1,nO(2) do a=nO(1)+1,nBas-nR(1) ia = ia + 1 jb = 0 do j=nC(1)+1,nO(1) do b=nO(2)+1,nBas-nR(2) jb = jb + 1 Bp(nSa+ia,jb) = - delta_Kx*ERI_aabb(j,i,a,b) end do end do end do end do end if ! Compute Tr(K x P_lambda) X(:,:) = 0.5d0*(XpY(:,:) + XmY(:,:)) Y(:,:) = 0.5d0*(XpY(:,:) - XmY(:,:)) EcAC = trace_matrix(nSt,matmul(X,matmul(Bp,transpose(Y))) + matmul(Y,matmul(Bp,transpose(X)))) & + trace_matrix(nSt,matmul(X,matmul(Ap,transpose(X))) + matmul(Y,matmul(Ap,transpose(Y)))) & - trace_matrix(nSt,Ap) end subroutine unrestricted_ACFDT_correlation_energy