subroutine ufRG0F02(dotest,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,epsHF) ! Unfold G0F02 implicit none include 'parameters.h' ! Input variables logical,intent(in) :: dotest integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: ENuc double precision,intent(in) :: ERHF double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) double precision,intent(in) :: epsHF(nBas) ! Local variables integer :: p integer :: s integer :: i,j,k,l integer :: a,b,c,d integer :: jb,kc,ia,ja integer :: klc,kcd,ija,ijb,iab,jab integer :: n2h1p,n2p1h,nH double precision,external :: Kronecker_delta double precision,allocatable :: H(:,:) double precision,allocatable :: epsGF2(:) double precision,allocatable :: Z(:) logical :: verbose = .true. double precision,parameter :: cutoff1 = 0.01d0 double precision,parameter :: cutoff2 = 0.01d0 double precision :: eFermi double precision,parameter :: window = 2d0 double precision :: start_timing,end_timing,timing ! Output variables ! Hello world write(*,*) write(*,*)'*****************************************' write(*,*)'* Restricted Upfolded G0F02 Calculation *' write(*,*)'*****************************************' write(*,*) ! Dimension of the supermatrix n2h1p = nO*nO*nV n2p1h = nV*nV*nO nH = 1 + n2h1p + n2p1h ! Memory allocation allocate(H(nH,nH),epsGF2(nH),Z(nH)) eFermi = 0.5d0*(epsHF(nO) + epsHF(nO+1)) !-------------------------! ! Main loop over orbitals ! !-------------------------! do p=nO-1,nO H(:,:) = 0d0 !---------------------------! ! Compute GF2 supermatrix ! !---------------------------! ! ! ! | e V2h1p V2p1h | ! ! | | ! ! H = | V2h1p C2h1p 0 | ! ! | | ! ! | V2p1h 0 C2p1h | ! ! ! !---------------------------! call wall_time(start_timing) !-----------! ! "Block" e ! !-----------! H(1,1) = epsHF(p) !-------------! ! Block V2h1p ! !-------------! ija = 0 do i=nC+1,nO do j=nC+1,nO do a=nO+1,nBas-nR ija = ija + 1 H(1 ,1+ija) = (2d0*ERI(p,a,i,j) - ERI(p,a,j,i))/sqrt(2d0) H(1+ija,1 ) = (2d0*ERI(p,a,i,j) - ERI(p,a,j,i))/sqrt(2d0) end do end do end do !-------------! ! Block V2p1h ! !-------------! iab = 0 do i=nC+1,nO do a=nO+1,nBas-nR do b=nO+1,nBas-nR iab = iab + 1 H(1 ,1+n2h1p+iab) = (2d0*ERI(p,i,a,b) - ERI(p,i,b,a))/sqrt(2d0) H(1+n2h1p+iab,1 ) = (2d0*ERI(p,i,a,b) - ERI(p,i,b,a))/sqrt(2d0) end do end do end do !-------------! ! Block C2h1p ! !-------------! ija = 0 do i=nC+1,nO do j=nC+1,nO do a=nO+1,nBas-nR ija = ija + 1 klc = 0 do k=nC+1,nO do l=nC+1,nO do c=nO+1,nBas-nR klc = klc + 1 H(1+ija,1+klc) & = (epsHF(i) + epsHF(j) - epsHF(a))*Kronecker_delta(j,l)*Kronecker_delta(a,c)*Kronecker_delta(i,k) end do end do end do end do end do end do !-------------! ! Block C2p1h ! !-------------! iab = 0 do i=nC+1,nO do a=nO+1,nBas-nR do b=nO+1,nBas-nR iab = iab + 1 kcd = 0 do k=nC+1,nO do c=nO+1,nBas-nR do d=nO+1,nBas-nR kcd = kcd + 1 H(1+n2h1p+iab,1+n2h1p+kcd) & = (epsHF(a) + epsHF(b) - epsHF(i))*Kronecker_delta(i,k)*Kronecker_delta(a,c)*Kronecker_delta(b,d) end do end do end do end do end do end do call wall_time(end_timing) timing = end_timing - start_timing write(*,*) write(*,'(A65,1X,F9.3,A8)') 'Total CPU time for construction of supermatrix = ',timing,' seconds' write(*,*) !-------------------------! ! Diagonalize supermatrix ! !-------------------------! call wall_time(start_timing) call diagonalize_matrix(nH,H,epsGF2) call wall_time(end_timing) timing = end_timing - start_timing write(*,*) write(*,'(A65,1X,F9.3,A8)') 'Total CPU time for diagonalization of supermatrix = ',timing,' seconds' write(*,*) !-----------------! ! Compute weights ! !-----------------! do s=1,nH Z(s) = H(1,s)**2 end do !--------------! ! Dump results ! !--------------! write(*,*)'-------------------------------------------' write(*,'(1X,A32,I3,A8)')'| G0F02 energies (eV) for orbital',p,' |' write(*,*)'-------------------------------------------' write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X)') & '|','#','|','e_QP','|','Z','|' write(*,*)'-------------------------------------------' do s=1,nH if(epsGF2(s) < eFermi .and. epsGF2(s) > eFermi - window) then ! if(Z(s) > cutoff1) then write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') & '|',s,'|',epsGF2(s)*HaToeV,'|',Z(s),'|' end if end do write(*,*)'-------------------------------------------' write(*,*) if(verbose) then do s=1,nH if(epsGF2(s) < eFermi .and. epsGF2(s) > eFermi - window) then write(*,*)'-------------------------------------------------------------' write(*,'(1X,A7,1X,I3,A6,I3,A1,1X,A7,F12.6,A13,F6.4,1X)') & 'Orbital',p,' and #',s,':','e_QP = ',epsGF2(s)*HaToeV,' eV and Z = ',Z(s) write(*,*)'-------------------------------------------------------------' write(*,'(1X,A20,1X,A20,1X,A15,1X)') & ' Configuration ',' Coefficient ',' Weight ' write(*,*)'-------------------------------------------------------------' if(p <= nO) & write(*,'(1X,A7,I3,A16,1X,F15.6,1X,F15.6)') & ' (',p,') ',H(1,s),H(1,s)**2 if(p > nO) & write(*,'(1X,A16,I3,A7,1X,F15.6,1X,F15.6)') & ' (',p,') ',H(1,s),H(1,s)**2 ija = 0 do i=nC+1,nO do j=nC+1,nO do a=nO+1,nBas-nR ija = ija + 1 if(abs(H(1+ija,s)) > cutoff2) & write(*,'(1X,A3,I3,A1,I3,A6,I3,A7,1X,F15.6,1X,F15.6)') & ' (',i,',',j,') -> (',a,') ',H(1+ija,s),H(1+ija,s)**2 end do end do end do iab = 0 do i=nC+1,nO do a=nO+1,nBas-nR do b=nO+1,nBas-nR iab = iab + 1 if(abs(H(1+n2h1p+iab,s)) > cutoff2) & write(*,'(1X,A7,I3,A6,I3,A1,I3,A3,1X,F15.6,1X,F15.6)') & ' (',i,') -> (',a,',',b,') ',H(1+n2h1p+iab,s),H(1+n2h1p+iab,s)**2 end do end do end do write(*,*)'-------------------------------------------------------------' write(*,*) end if ! If state s should be print end do ! Loop on s end if ! If verbose end do ! Loop on the orbital in the e block end subroutine