subroutine GF2_ppBSE2_dynamic_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nVV,lambda,ERI,eGF,OmBSE,KC_dyn,ZC_dyn) ! Compute the resonant part of the dynamic BSE2 matrix implicit none include 'parameters.h' ! Input variables integer,intent(in) :: ispin integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nVV double precision,intent(in) :: eta double precision,intent(in) :: lambda double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) double precision,intent(in) :: eGF(nBas) double precision,intent(in) :: OmBSE ! Local variables double precision :: dem,num integer :: m integer :: a,b,c,d,e integer :: ab,cd ! Output variables double precision,intent(out) :: KC_dyn(nVV,nVV) double precision,intent(out) :: ZC_dyn(nVV,nVV) ! Initialization KC_dyn(:,:) = 0d0 ZC_dyn(:,:) = 0d0 ! Second-order correlation kernel for the block C of the singlet manifold if(ispin == 1) then ab = 0 do a=nO+1,nBas-nR do b=a,nBas-nR ab = ab + 1 cd = 0 do c=nO+1,nBas-nR do d=c,nBas-nR cd = cd + 1 do m=nC+1,nO do e=nO+1,nBas-nR dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(b) num = 2d0*ERI(a,m,c,e)*ERI(b,e,d,m) - ERI(a,m,c,e)*ERI(b,e,m,d) & - ERI(a,m,e,c)*ERI(b,e,d,m) + 2d0*ERI(a,m,e,c)*ERI(b,e,m,d) KC_dyn(ab,cd) = KC_dyn(ab,cd) + 0.5d0*num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(a) num = 2d0*ERI(b,m,c,e)*ERI(a,e,d,m) - ERI(b,m,c,e)*ERI(a,e,m,d) & - ERI(b,m,e,c)*ERI(a,e,d,m) + 2d0*ERI(b,m,e,c)*ERI(a,e,m,d) KC_dyn(ab,cd) = KC_dyn(ab,cd) - 0.5d0*num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGF(d) + eGF(m) - eGF(e) - eGF(a) num = 2d0*ERI(a,e,c,m)*ERI(b,m,d,e) - ERI(a,e,c,m)*ERI(b,m,e,d) & - ERI(a,e,m,c)*ERI(b,m,d,e) + 2d0*ERI(a,e,m,c)*ERI(b,m,e,d) KC_dyn(ab,cd) = KC_dyn(ab,cd) + 0.5d0*num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGF(d) + eGF(m) - eGF(e) - eGF(b) num = 2d0*ERI(b,e,c,m)*ERI(a,m,d,e) - ERI(b,e,c,m)*ERI(a,m,e,d) & - ERI(b,e,m,c)*ERI(a,m,d,e) + 2d0*ERI(b,e,c,m)*ERI(a,m,e,d) KC_dyn(ab,cd) = KC_dyn(ab,cd) - 0.5d0*num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 end do end do end do end do end do end do end if ! Second-order correlation kernel for the block C of the triplet manifold if(ispin == 2) then ab = 0 do a=nO+1,nBas-nR do b=a+1,nBas-nR ab = ab + 1 cd = 0 do c=nO+1,nBas-nR do d=c+1,nBas-nR cd = cd + 1 do m=nC+1,nO do e=nO+1,nBas-nR dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(b) num = 2d0*ERI(a,m,c,e)*ERI(b,e,d,m) - ERI(a,m,c,e)*ERI(b,e,m,d) - ERI(a,m,e,c)*ERI(b,e,d,m) KC_dyn(ab,cd) = KC_dyn(ab,cd) + 0.5d0*num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(a) num = 2d0*ERI(b,m,c,e)*ERI(a,e,d,m) - ERI(b,m,c,e)*ERI(a,e,m,d) - ERI(b,m,e,c)*ERI(a,e,d,m) KC_dyn(ab,cd) = KC_dyn(ab,cd) - 0.5d0*num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGF(d) + eGF(m) - eGF(e) - eGF(a) num = 2d0*ERI(a,e,c,m)*ERI(b,m,d,e) - ERI(a,e,c,m)*ERI(b,m,e,d) - ERI(a,e,m,c)*ERI(b,m,d,e) KC_dyn(ab,cd) = KC_dyn(ab,cd) + 0.5d0*num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 dem = OmBSE - eGF(d) + eGF(m) - eGF(e) - eGF(b) num = 2d0*ERI(b,e,c,m)*ERI(a,m,d,e) - ERI(b,e,c,m)*ERI(a,m,e,d) - ERI(b,e,m,c)*ERI(a,m,d,e) KC_dyn(ab,cd) = KC_dyn(ab,cd) - 0.5d0*num*dem/(dem**2 + eta**2) ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 end do end do end do end do end do end do end if end subroutine