subroutine unrestricted_oscillator_strength(nBas,nC,nO,nV,nR,nS,nSa,nSb,nSt,dipole_int_aa,dipole_int_bb,Omega,XpY,XmY,os) ! Compute linear response implicit none include 'parameters.h' ! Input variables integer,intent(in) :: nBas integer,intent(in) :: nC(nspin) integer,intent(in) :: nO(nspin) integer,intent(in) :: nV(nspin) integer,intent(in) :: nR(nspin) integer,intent(in) :: nS(nspin) integer,intent(in) :: nSa integer,intent(in) :: nSb integer,intent(in) :: nSt double precision :: dipole_int_aa(nBas,nBas,ncart) double precision :: dipole_int_bb(nBas,nBas,ncart) double precision,intent(in) :: Omega(nSt) double precision,intent(in) :: XpY(nSt,nSt) double precision,intent(in) :: XmY(nSt,nSt) ! Local variables logical :: debug = .false. integer :: ia,jb,i,j,a,b integer :: ixyz double precision,allocatable :: f(:,:) ! Output variables double precision :: os(nSt) ! Memory allocation allocate(f(nSt,ncart)) ! Initialization f(:,:) = 0d0 ! Compute dipole moments and oscillator strengths do ia=1,nSt do ixyz=1,ncart jb = 0 do j=nC(1)+1,nO(1) do b=nO(1)+1,nBas-nR(1) jb = jb + 1 f(ia,ixyz) = f(ia,ixyz) + dipole_int_aa(j,b,ixyz)*XpY(ia,jb) end do end do jb = 0 do j=nC(2)+1,nO(2) do b=nO(2)+1,nBas-nR(2) jb = jb + 1 f(ia,ixyz) = f(ia,ixyz) + dipole_int_bb(j,b,ixyz)*XpY(ia,nSa+jb) end do end do end do end do do ia=1,nSt os(ia) = 2d0/3d0*Omega(ia)*sum(f(ia,:)**2) end do if(debug) then write(*,*) '------------------------' write(*,*) ' Dipole moments (X Y Z) ' write(*,*) '------------------------' call matout(nS,ncart,f) write(*,*) write(*,*) '----------------------' write(*,*) ' Oscillator strengths ' write(*,*) '----------------------' call matout(nS,1,os) write(*,*) end if end subroutine unrestricted_oscillator_strength