subroutine RGTpp_self_energy_diag(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,nOOt,nVVt,e,Om1s,rho1s,Om2s,rho2s,Om1t,rho1t,Om2t,rho2t, & EcGM,Sig,Z) ! Compute diagonal of the correlation part of the T-matrix self-energy implicit none include 'parameters.h' ! Input variables double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nOOs,nOOt integer,intent(in) :: nVVs,nVVt double precision,intent(in) :: e(nBas) double precision,intent(in) :: Om1s(nVVs),Om1t(nVVt) double precision,intent(in) :: rho1s(nBas,nBas,nVVs),rho1t(nBas,nBas,nVVt) double precision,intent(in) :: Om2s(nOOs),Om2t(nOOt) double precision,intent(in) :: rho2s(nBas,nBas,nOOs),rho2t(nBas,nBas,nOOt) ! Local variables integer :: i,j,a,b,p,cd,kl double precision :: num,eps ! Output variables double precision,intent(inout) :: EcGM double precision,intent(inout) :: Sig(nBas) double precision,intent(inout) :: Z(nBas) ! Initialization Sig(:) = 0d0 Z(:) = 0d0 EcGM = 0d0 !--------------------------------------! ! Occupied part of the Tpp self-energy ! !--------------------------------------! do p=nC+1,nBas-nR do i=nC+1,nO do cd=1,nVVs eps = e(p) + e(i) - Om1s(cd) num = rho1s(p,i,cd)**2 Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do do cd=1,nVVt eps = e(p) + e(i) - Om1t(cd) num = rho1t(p,i,cd)**2 Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do !---------------------------------------------- ! Virtual part of the T-matrix self-energy !---------------------------------------------- do p=nC+1,nBas-nR do a=nO+1,nBas-nR do kl=1,nOOs eps = e(p) + e(a) - Om2s(kl) num = rho2s(p,a,kl)**2 Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do do kl=1,nOOt eps = e(p) + e(a) - Om2t(kl) num = rho2t(p,a,kl)**2 Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do !---------------------------------------------- ! Galitskii-Migdal correlation energy !---------------------------------------------- do i=nC+1,nO do j=nC+1,nO do cd=1,nVVs eps = e(i) + e(j) - Om1s(cd) num = rho1s(i,j,cd)**2 EcGM = EcGM + num*eps/(eps**2 + eta**2) end do do cd=1,nVVt eps = e(i) + e(j) - Om1t(cd) num = rho1t(i,j,cd)**2 EcGM = EcGM + num*eps/(eps**2 + eta**2) end do end do end do do a=nO+1,nBas-nR do b=nO+1,nBas-nR do kl=1,nOOs eps = e(a) + e(b) - Om2s(kl) num = rho2s(a,b,kl)**2 EcGM = EcGM - num*eps/(eps**2 + eta**2) end do do kl=1,nOOt eps = e(a) + e(b) - Om2t(kl) num = rho2t(a,b,kl)**2 EcGM = EcGM - num*eps/(eps**2 + eta**2) end do end do end do Z(:) = 1d0/(1d0 - Z(:)) end subroutine