subroutine BSE2_static_kernel(eta,nBas,nC,nO,nV,nR,nS,lambda,eW,ERI,Om,rho,A_sta) ! Compute the second-order static BSE kernel (only for singlets!) implicit none include 'parameters.h' ! Input variables double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: lambda double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) double precision,intent(in) :: eW(nBas) double precision,intent(in) :: Om(nS) double precision,intent(in) :: rho(nBas,nBas,nS) ! Local variables double precision :: chi integer :: p,q,r,s integer :: m double precision :: dem,num integer :: i,j,k,l integer :: a,b,c,d integer :: ia,jb double precision,allocatable :: W(:,:,:,:) ! Output variables double precision,intent(inout) :: A_sta(nS,nS) ! memory allocation allocate(W(nBas,nBas,nBas,nBas)) !------------------------------------------------ ! Compute static screening (physicist's notation) !------------------------------------------------ do p=1,nBas do q=1,nBas do r=1,nBas do s=1,nBas chi = 0d0 do m=1,nS dem = Om(m)**2 + eta**2 chi = chi + rho(p,q,m)*rho(r,s,m)*Om(m)/dem enddo W(p,s,q,r) = - ERI(p,s,q,r) + 4d0*chi enddo enddo enddo enddo ia = 0 do i=nC+1,nO do a=nO+1,nBas-nR ia = ia + 1 jb = 0 do j=nC+1,nO do b=nO+1,nBas-nR jb = jb + 1 do k=nC+1,nO do c=nO+1,nBas-nR dem = - (eW(c) - eW(k)) num = 2d0*W(j,k,i,c)*W(a,c,b,k) A_sta(ia,jb) = A_sta(ia,jb) - num*dem/(dem**2 + eta**2) dem = + (eW(c) - eW(k)) num = 2d0*W(j,c,i,k)*W(a,k,b,c) A_sta(ia,jb) = A_sta(ia,jb) + num*dem/(dem**2 + eta**2) end do end do do c=nO+1,nBas-nR do d=nO+1,nBas-nR dem = - (eW(c) + eW(d)) num = 2d0*W(a,j,c,d)*W(c,d,i,b) A_sta(ia,jb) = A_sta(ia,jb) + num*dem/(dem**2 + eta**2) end do end do do k=nC+1,nO do l=nC+1,nO dem = - (eW(k) + eW(l)) num = 2d0*W(a,j,k,l)*W(k,l,i,b) A_sta(ia,jb) = A_sta(ia,jb) - num*dem/(dem**2 + eta**2) end do end do end do end do end do end do end subroutine BSE2_static_kernel