subroutine qsGW(maxSCF,thresh,max_diis,COHSEX,SOSEX,BSE,TDA,G0W,GW0,singlet_manifold,triplet_manifold, & nBas,nC,nO,nV,nR,nS,ENuc,S,X,T,V,Hc,ERI_AO_basis,PHF,cHF,eHF) ! Compute linear response implicit none include 'parameters.h' ! Input variables integer,intent(in) :: maxSCF,max_diis double precision,intent(in) :: thresh logical,intent(in) :: COHSEX,SOSEX,BSE,TDA,G0W,GW0,singlet_manifold,triplet_manifold integer,intent(in) :: nBas,nC,nO,nV,nR,nS double precision,intent(in) :: ENuc double precision,intent(in) :: PHF(nBas,nBas),cHF(nBas,nBas),eHF(nBas) double precision,intent(in) :: S(nBas,nBas),T(nBas,nBAs),V(nBas,nBas),Hc(nBas,nBas),X(nBas,nBas) double precision,intent(in) :: ERI_AO_basis(nBas,nBas,nBas,nBas) ! Local variables logical :: dRPA integer :: nSCF,nBasSq,ispin,n_diis double precision :: EcRPA,EcGM,Conv double precision,external :: trace_matrix double precision,allocatable :: error_diis(:,:),F_diis(:,:) double precision,allocatable :: Omega(:,:),XpY(:,:,:),rho(:,:,:,:),rhox(:,:,:,:) double precision,allocatable :: c(:,:),cp(:,:),e(:),P(:,:) double precision,allocatable :: F(:,:),Fp(:,:),J(:,:),K(:,:) double precision,allocatable :: SigC(:,:),SigCp(:,:),SigCm(:,:),Z(:) double precision,allocatable :: error(:,:),ERI_MO_basis(:,:,:,:) ! Hello world write(*,*) write(*,*)'************************************************' write(*,*)'| Self-consistent qsGW calculation |' write(*,*)'************************************************' write(*,*) ! Stuff nBasSq = nBas*nBas ! SOSEX correction if(SOSEX) write(*,*) 'SOSEX correction activated!' write(*,*) ! Switch off exchange for G0W0 dRPA = .true. ! Memory allocation allocate(e(nBas),c(nBas,nBas),cp(nBas,nBas),P(nBas,nBas),F(nBas,nBas),Fp(nBas,nBas), & J(nBas,nBas),K(nBas,nBas),SigC(nBas,nBas),SigCp(nBas,nBas),SigCm(nBas,nBas),Z(nBas), & ERI_MO_basis(nBas,nBas,nBas,nBas),error(nBas,nBas), & Omega(nS,nspin),XpY(nS,nS,nspin),rho(nBas,nBas,nS,nspin),rhox(nBas,nBas,nS,nspin), & error_diis(nBasSq,max_diis),F_diis(nBasSq,max_diis)) ! Initialization nSCF = 0 n_diis = 0 ispin = 1 Conv = 1d0 P(:,:) = PHF(:,:) e(:) = eHF(:) c(:,:) = cHF(:,:) F_diis(:,:) = 0d0 error_diis(:,:) = 0d0 !------------------------------------------------------------------------ ! Main loop !------------------------------------------------------------------------ do while(Conv > thresh .and. nSCF <= maxSCF) ! Buid Coulomb matrix call Coulomb_matrix_AO_basis(nBas,P,ERI_AO_basis,J) ! Compute exchange part of the self-energy call exchange_matrix_AO_basis(nBas,P,ERI_AO_basis,K) ! AO to MO transformation of two-electron integrals call AOtoMO_integral_transform(nBas,c,ERI_AO_basis,ERI_MO_basis) ! Compute linear response if(.not. GW0 .or. nSCF == 0) then call linear_response(ispin,dRPA,TDA,.false.,nBas,nC,nO,nV,nR,nS,e,ERI_MO_basis, & rho(:,:,:,ispin),EcRPA,Omega(:,ispin),XpY(:,:,ispin)) endif ! Compute correlation part of the self-energy call excitation_density(nBas,nC,nO,nR,nS,c,ERI_AO_basis,XpY(:,:,ispin),rho(:,:,:,ispin)) if(SOSEX) call excitation_density_SOSEX(nBas,nC,nO,nR,nS,c,ERI_AO_basis,XpY(:,:,ispin),rhox(:,:,:,ispin)) if(G0W) then call self_energy_correlation(COHSEX,SOSEX,nBas,nC,nO,nV,nR,nS,eHF, & Omega(:,ispin),rho(:,:,:,ispin),rhox(:,:,:,ispin),EcGM,SigC) call renormalization_factor(SOSEX,nBas,nC,nO,nV,nR,nS,eHF,Omega(:,ispin),rho(:,:,:,ispin),rhox(:,:,:,ispin),Z) else call self_energy_correlation(COHSEX,SOSEX,nBas,nC,nO,nV,nR,nS,e, & Omega(:,ispin),rho(:,:,:,ispin),rhox(:,:,:,ispin),EcGM,SigC) call renormalization_factor(SOSEX,nBas,nC,nO,nV,nR,nS,e,Omega(:,ispin),rho(:,:,:,ispin),rhox(:,:,:,ispin),Z) endif ! Make correlation self-energy Hermitian and transform it back to AO basis SigCp = 0.5d0*(SigC + transpose(SigC)) SigCm = 0.5d0*(SigC - transpose(SigC)) call MOtoAO_transform(nBas,S,c,SigCp) ! Solve the quasi-particle equation F(:,:) = Hc(:,:) + J(:,:) + K(:,:) + SigCp(:,:) ! Compute commutator and convergence criteria error = matmul(F,matmul(P,S)) - matmul(matmul(S,P),F) Conv = maxval(abs(error)) ! DIIS extrapolation n_diis = min(n_diis+1,max_diis) call DIIS_extrapolation(nBasSq,nBasSq,n_diis,error_diis,F_diis,error,F) ! Diagonalize Hamiltonian in AO basis Fp = matmul(transpose(X),matmul(F,X)) cp(:,:) = Fp(:,:) call diagonalize_matrix(nBas,cp,e) c = matmul(X,cp) ! Compute new density matrix in the AO basis P(:,:) = 2d0*matmul(c(:,1:nO),transpose(c(:,1:nO))) ! Print results call print_excitation('RPA ',ispin,nS,Omega(:,ispin)) call print_qsGW(nBas,nO,nSCF,Conv,thresh,eHF,e,c,ENuc,P,T,V,Hc,J,K,F,SigCp,Z,EcRPA,EcGM) ! Increment nSCF = nSCF + 1 enddo !------------------------------------------------------------------------ ! End main loop !------------------------------------------------------------------------ ! Compute second-order correction of the Hermitization error call qsGW_PT(nBas,nC,nO,nV,nR,nS,e,SigCm) ! Compute the overlap between HF and GW orbitals ! call overlap(nBas,cHF,c) ! Compute natural orbitals and occupancies ! call natural_orbital(nBas,nO,cHF,c) ! Did it actually converge? if(nSCF == maxSCF+1) then write(*,*) write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,*)' Convergence failed ' write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,*) if(BSE) stop endif ! Perform BSE calculation if(BSE) then ! Singlet manifold if(singlet_manifold) then ispin = 1 call linear_response(ispin,dRPA,TDA,BSE,nBas,nC,nO,nV,nR,nS,e,ERI_MO_basis, & rho(:,:,:,ispin),EcRPA,Omega(:,ispin),XpY(:,:,ispin)) call print_excitation('BSE ',ispin,nS,Omega(:,ispin)) endif ! Triplet manifold if(triplet_manifold) then ispin = 2 call linear_response(ispin,dRPA,TDA,.false.,nBas,nC,nO,nV,nR,nS,e,ERI_MO_basis, & rho(:,:,:,ispin),EcRPA,Omega(:,ispin),XpY(:,:,ispin)) call excitation_density(nBas,nC,nO,nR,nS,c,ERI_AO_basis,XpY(:,:,ispin),rho(:,:,:,ispin)) call linear_response(ispin,dRPA,TDA,BSE,nBas,nC,nO,nV,nR,nS,e,ERI_MO_basis, & rho(:,:,:,ispin),EcRPA,Omega(:,ispin),XpY(:,:,ispin)) call print_excitation('BSE ',ispin,nS,Omega(:,ispin)) endif endif end subroutine qsGW