subroutine print_transition_vectors(spin_allowed,nBas,nC,nO,nV,nR,nS,dipole_int,Omega,XpY,XmY) ! Print transition vectors for linear response calculation implicit none include 'parameters.h' ! Input variables logical,intent(in) :: spin_allowed integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision :: dipole_int(nBas,nBas,ncart) double precision,intent(in) :: Omega(nS) double precision,intent(in) :: XpY(nS,nS) double precision,intent(in) :: XmY(nS,nS) ! Local variables logical :: debug = .false. integer :: ia,jb,i,j,a,b integer :: ixyz integer,parameter :: maxS = 10 double precision :: norm double precision,parameter :: thres_vec = 0.1d0 double precision,allocatable :: X(:) double precision,allocatable :: Y(:) double precision,allocatable :: f(:,:) double precision,allocatable :: os(:) ! Memory allocation allocate(X(nS),Y(nS),f(nS,ncart),os(nS)) ! Compute dipole moments and oscillator strengths f(:,:) = 0d0 if(spin_allowed) then do ia=1,nS do ixyz=1,ncart jb = 0 do j=nC+1,nO do b=nO+1,nBas-nR jb = jb + 1 f(ia,ixyz) = f(ia,ixyz) + dipole_int(j,b,ixyz)*XpY(ia,jb) end do end do end do end do f(:,:) = sqrt(2d0)*f(:,:) do ia=1,nS os(ia) = 2d0/3d0*Omega(ia)*sum(f(ia,:)**2) end do if(debug) then write(*,*) '------------------------' write(*,*) ' Dipole moments (X Y Z) ' write(*,*) '------------------------' call matout(nS,ncart,f) write(*,*) write(*,*) '----------------------' write(*,*) ' Oscillator strengths ' write(*,*) '----------------------' call matout(nS,1,os) write(*,*) end if end if ! Print details about excitations do ia=1,min(nS,maxS) X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:)) Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:)) print*,'---------------------------------------------' write(*,'(A15,I3,A2,F10.6,A3,A6,F6.4,A1)') ' Excitation n. ',ia,': ',Omega(ia)*HaToeV,' eV',' (f = ',os(ia),')' print*,'---------------------------------------------' jb = 0 do j=nC+1,nO do b=nO+1,nBas-nR jb = jb + 1 if(abs(X(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' -> ',b,' = ',X(jb)/sqrt(2d0) end do end do jb = 0 do j=nC+1,nO do b=nO+1,nBas-nR jb = jb + 1 if(abs(Y(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' <- ',b,' = ',Y(jb)/sqrt(2d0) end do end do write(*,*) end do write(*,'(A30,F10.6)') 'Thomas-Reiche-Kuhn sum rule = ',sum(os(:)) write(*,*) end subroutine print_transition_vectors