subroutine print_unrestricted_transition_vectors(spin_allowed,nBas,nC,nO,nV,nR,nS,nSt,dipole_int,Omega,XpY,XmY) ! Print transition vectors for linear response calculation implicit none include 'parameters.h' ! Input variables logical,intent(in) :: spin_allowed integer,intent(in) :: nBas integer,intent(in) :: nC(nspin) integer,intent(in) :: nO(nspin) integer,intent(in) :: nV(nspin) integer,intent(in) :: nR(nspin) integer,intent(in) :: nS(nspin) integer,intent(in) :: nSt double precision :: dipole_int(nBas,nBas,ncart,nspin) double precision,intent(in) :: Omega(nSt) double precision,intent(in) :: XpY(nSt,nSt) double precision,intent(in) :: XmY(nSt,nSt) ! Local variables integer :: ia,jb,i,j,a,b integer :: ixyz integer :: ispin integer,parameter :: maxS = 10 double precision :: norm double precision,parameter :: thres_vec = 0.1d0 double precision,allocatable :: X(:) double precision,allocatable :: Y(:) double precision,allocatable :: f(:,:) double precision,allocatable :: os(:) ! Memory allocation allocate(X(nSt),Y(nSt),f(nSt,ncart),os(nSt)) ! Compute dipole moments and oscillator strengths f(:,:) = 0d0 if(spin_allowed) then do ispin=1,nspin do ia=1,nSt do ixyz=1,ncart jb = 0 do j=nC(ispin)+1,nO(ispin) do b=nO(ispin)+1,nBas-nR(ispin) jb = jb + 1 f(ia,ixyz) = f(ia,ixyz) + dipole_int(j,b,ixyz,ispin)*XpY(ia,jb) end do end do end do end do end do write(*,*) '----------------' write(*,*) ' Dipole moments ' write(*,*) '----------------' call matout(nSt,ncart,f(:,:)) write(*,*) do ia=1,nSt os(ia) = 2d0/3d0*Omega(ia)*sum(f(ia,:)**2) end do write(*,*) '----------------------' write(*,*) ' Oscillator strengths ' write(*,*) '----------------------' call matout(nSt,1,os(:)) write(*,*) end if ! Print details about excitations do ia=1,min(nSt,maxS) X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:)) Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:)) print*,'---------------------------------------------' write(*,'(A15,I3,A2,F10.6,A3,A6,F6.4,A1)') ' Excitation n. ',ia,': ',Omega(ia)*HaToeV,' eV',' (f = ',os(ia),')' print*,'---------------------------------------------' ! Spin-up transitions jb = 0 do j=nC(1)+1,nO(1) do b=nO(1)+1,nBas-nR(1) jb = jb + 1 if(abs(X(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' -> ',b,' = ',X(jb)/sqrt(2d0) end do end do jb = 0 do j=nC(1)+1,nO(1) do b=nO(1)+1,nBas-nR(1) jb = jb + 1 if(abs(Y(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' <- ',b,' = ',Y(jb)/sqrt(2d0) end do end do write(*,*) ! Spin-down transitions jb = 0 do j=nC(2)+1,nO(2) do b=nO(2)+1,nBas-nR(2) jb = jb + 1 if(abs(X(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' -> ',b,' = ',X(jb)/sqrt(2d0) end do end do jb = 0 do j=nC(2)+1,nO(2) do b=nO(2)+1,nBas-nR(2) jb = jb + 1 if(abs(Y(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' <- ',b,' = ',Y(jb)/sqrt(2d0) end do end do write(*,*) end do write(*,'(A30,F10.6)') 'Thomas-Reiche-Kuhn sum rule = ',sum(os(:)) write(*,*) end subroutine print_unrestricted_transition_vectors