subroutine print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega,XpY,XmY) ! Print transition vectors for linear response calculation implicit none include 'parameters.h' ! Input variables integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: Omega(nS) double precision,intent(in) :: XpY(nS,nS) double precision,intent(in) :: XmY(nS,nS) ! Local variables integer :: ia,jb,i,j,a,b integer,parameter :: maxS = 10 double precision,parameter :: thres_vec = 0.1d0 double precision :: norm double precision,allocatable :: X(:) double precision,allocatable :: Y(:) ! Memory allocation allocate(X(nS),Y(nS)) write(*,*) do ia=1,min(nS,maxS) X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:)) Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:)) norm = 0d0 do jb=1,nS norm = norm + X(jb)*X(jb) end do norm = sqrt(norm) print*,'--------------------------------' write(*,'(A15,I3,A2,F10.6,A3)') ' Excitation n. ',ia,': ',Omega(ia)*HaToeV,' eV' print*,'--------------------------------' jb = 0 do j=nC+1,nO do b=nO+1,nBas-nR jb = jb + 1 if(abs(X(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' -> ',b,' = ',X(jb)/sqrt(2d0) end do end do norm = 0d0 do jb=1,nS norm = norm + Y(jb)*Y(jb) end do norm = sqrt(norm) jb = 0 do j=nC+1,nO do b=nO+1,nBas-nR jb = jb + 1 if(abs(Y(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' <- ',b,' = ',Y(jb)/sqrt(2d0) end do end do write(*,*) end do end subroutine print_transition_vectors