subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_W,TDA,dBSE,dTDA,evDyn,singlet_manifold,triplet_manifold, & linearize,eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF,eG0T0) ! Perform one-shot calculation with a T-matrix self-energy (G0T0) implicit none include 'parameters.h' ! Input variables logical,intent(in) :: doACFDT logical,intent(in) :: exchange_kernel logical,intent(in) :: doXBS logical,intent(in) :: BSE logical,intent(in) :: TDA_W logical,intent(in) :: TDA logical,intent(in) :: dBSE logical,intent(in) :: dTDA logical,intent(in) :: evDyn logical,intent(in) :: singlet_manifold logical,intent(in) :: triplet_manifold logical,intent(in) :: linearize double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR integer,intent(in) :: nS double precision,intent(in) :: ENuc double precision,intent(in) :: ERHF double precision,intent(in) :: eHF(nBas) double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) ! Local variables integer :: ispin integer :: iblock integer :: nOOs,nOOt integer :: nVVs,nVVt double precision :: dERI double precision :: xERI double precision :: alpha double precision :: EcRPA(nspin) double precision :: EcBSE(nspin) double precision :: EcAC(nspin) double precision,allocatable :: Omega1s(:),Omega1t(:) double precision,allocatable :: X1s(:,:),X1t(:,:) double precision,allocatable :: Y1s(:,:),Y1t(:,:) double precision,allocatable :: rho1s(:,:,:),rho1t(:,:,:) double precision,allocatable :: Omega2s(:),Omega2t(:) double precision,allocatable :: X2s(:,:),X2t(:,:) double precision,allocatable :: Y2s(:,:),Y2t(:,:) double precision,allocatable :: rho2s(:,:,:),rho2t(:,:,:) double precision,allocatable :: SigT(:) double precision,allocatable :: Z(:) double precision,allocatable :: Omega(:,:) double precision,allocatable :: XpY(:,:,:) double precision,allocatable :: XmY(:,:,:) double precision,allocatable :: rho(:,:,:,:) ! Output variables double precision,intent(out) :: eG0T0(nBas) ! Hello world write(*,*) write(*,*)'************************************************' write(*,*)'| One-shot G0T0 calculation |' write(*,*)'************************************************' write(*,*) ! Dimensions of the pp-RPA linear reponse matrices nOOs = nO*nO nVVs = nV*nV ! nOOs = nO*(nO + 1)/2 ! nVVs = nV*(nV + 1)/2 nOOt = nO*(nO - 1)/2 nVVt = nV*(nV - 1)/2 ! Memory allocation allocate(Omega1s(nVVs),X1s(nVVs,nVVs),Y1s(nOOs,nVVs), & Omega2s(nOOs),X2s(nVVs,nOOs),Y2s(nOOs,nOOs), & rho1s(nBas,nO,nVVs),rho2s(nBas,nV,nOOs), & Omega1t(nVVt),X1t(nVVt,nVVt),Y1t(nOOt,nVVt), & Omega2t(nOOt),X2t(nVVt,nOOt),Y2t(nOOt,nOOt), & rho1t(nBas,nO,nVVt),rho2t(nBas,nV,nOOt), & SigT(nBas),Z(nBas)) !---------------------------------------------- ! alpha-beta block !---------------------------------------------- ispin = 1 iblock = 3 ! Compute linear response call linear_response_pp(iblock,.true.,.false.,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF(:),ERI(:,:,:,:), & Omega1s(:),X1s(:,:),Y1s(:,:),Omega2s(:),X2s(:,:),Y2s(:,:),EcRPA(ispin)) ! EcRPA(ispin) = 1d0*EcRPA(ispin) ! call print_excitation('pp-RPA (N+2)',iblock,nVVs,Omega1s(:)) ! call print_excitation('pp-RPA (N-2)',iblock,nOOs,Omega2s(:)) !---------------------------------------------- ! alpha-alpha block !---------------------------------------------- ispin = 2 iblock = 4 ! Compute linear response call linear_response_pp(iblock,.true.,.false.,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF(:),ERI(:,:,:,:), & Omega1t(:),X1t(:,:),Y1t(:,:),Omega2t(:),X2t(:,:),Y2t(:,:),EcRPA(ispin)) ! EcRPA(ispin) = 2d0*EcRPA(ispin) ! EcRPA(ispin) = 3d0*EcRPA(ispin) ! call print_excitation('pp-RPA (N+2)',iblock,nVVt,Omega1t(:)) ! call print_excitation('pp-RPA (N-2)',iblock,nOOt,Omega2t(:)) !---------------------------------------------- ! Compute T-matrix version of the self-energy !---------------------------------------------- SigT(:) = 0d0 Z(:) = 0d0 iblock = 3 dERI = +1d0 xERI = +0d0 alpha = +1d0 call excitation_density_Tmatrix(iblock,dERI,xERI,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI(:,:,:,:), & X1s(:,:),Y1s(:,:),rho1s(:,:,:),X2s(:,:),Y2s(:,:),rho2s(:,:,:)) call self_energy_Tmatrix_diag(alpha,eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF(:), & Omega1s(:),rho1s(:,:,:),Omega2s(:),rho2s(:,:,:),SigT(:)) call renormalization_factor_Tmatrix(alpha,eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF(:), & Omega1s(:),rho1s(:,:,:),Omega2s(:),rho2s(:,:,:),Z(:)) iblock = 4 dERI = +1d0 xERI = -1d0 alpha = +1d0 call excitation_density_Tmatrix(iblock,dERI,xERI,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI(:,:,:,:), & X1t(:,:),Y1t(:,:),rho1t(:,:,:),X2t(:,:),Y2t(:,:),rho2t(:,:,:)) call self_energy_Tmatrix_diag(alpha,eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF(:), & Omega1t(:),rho1t(:,:,:),Omega2t(:),rho2t(:,:,:),SigT(:)) call renormalization_factor_Tmatrix(alpha,eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF(:), & Omega1t(:),rho1t(:,:,:),Omega2t(:),rho2t(:,:,:),Z(:)) Z(:) = 1d0/(1d0 - Z(:)) !---------------------------------------------- ! Solve the quasi-particle equation !---------------------------------------------- if(linearize) then eG0T0(:) = eHF(:) + Z(:)*SigT(:) else eG0T0(:) = eHF(:) + SigT(:) end if !---------------------------------------------- ! Dump results !---------------------------------------------- call print_G0T0(nBas,nO,eHF(:),ENuc,ERHF,SigT(:),Z(:),eG0T0(:),EcRPA(:)) ! Compute the ppRPA correlation energy ispin = 1 iblock = 3 call linear_response_pp(iblock,.false.,.false.,nBas,nC,nO,nV,nR,nOOs,nVVs,eG0T0(:),ERI(:,:,:,:), & Omega1s(:),X1s(:,:),Y1s(:,:),Omega2s(:),X2s(:,:),Y2s(:,:),EcRPA(ispin)) ispin = 2 iblock = 4 call linear_response_pp(iblock,.false.,.false.,nBas,nC,nO,nV,nR,nOOt,nVVt,eG0T0(:),ERI(:,:,:,:), & Omega1t(:),X1t(:,:),Y1t(:,:),Omega2t(:),X2t(:,:),Y2t(:,:),EcRPA(ispin)) EcRPA(1) = EcRPA(1) - EcRPA(2) EcRPA(2) = 3d0*EcRPA(2) write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10)') 'Tr@RPA@G0T0 correlation energy (singlet) =',EcRPA(1) write(*,'(2X,A50,F20.10)') 'Tr@RPA@G0T0 correlation energy (triplet) =',EcRPA(2) write(*,'(2X,A50,F20.10)') 'Tr@RPA@G0T0 correlation energy =',EcRPA(1) + EcRPA(2) write(*,'(2X,A50,F20.10)') 'Tr@RPA@G0T0 total energy =',ENuc + ERHF + EcRPA(1) + EcRPA(2) write(*,*)'-------------------------------------------------------------------------------' write(*,*) ! Perform BSE calculation if(BSE) then allocate(Omega(nS,nspin),XpY(nS,nS,nspin),XmY(nS,nS,nspin),rho(nBas,nBas,nS,nspin)) call Bethe_Salpeter(TDA_W,TDA,dBSE,dTDA,evDyn,singlet_manifold,triplet_manifold,eta, & nBas,nC,nO,nV,nR,nS,ERI,eHF,eG0T0,Omega,XpY,XmY,rho,EcRPA,EcBSE) if(exchange_kernel) then EcRPA(1) = 0.5d0*EcRPA(1) EcRPA(2) = 1.5d0*EcRPA(1) end if write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10)') 'Tr@BSE@G0T0 correlation energy (singlet) =',EcBSE(1) write(*,'(2X,A50,F20.10)') 'Tr@BSE@G0T0 correlation energy (triplet) =',EcBSE(2) write(*,'(2X,A50,F20.10)') 'Tr@BSE@G0T0 correlation energy =',EcBSE(1) + EcBSE(2) write(*,'(2X,A50,F20.10)') 'Tr@BSE@G0T0 total energy =',ENuc + ERHF + EcBSE(1) + EcBSE(2) write(*,*)'-------------------------------------------------------------------------------' write(*,*) ! Compute the BSE correlation energy via the adiabatic connection if(doACFDT) then write(*,*) '------------------------------------------------------' write(*,*) 'Adiabatic connection version of BSE correlation energy' write(*,*) '------------------------------------------------------' write(*,*) if(doXBS) then write(*,*) '*** scaled screening version (XBS) ***' write(*,*) end if call ACFDT(exchange_kernel,doXBS,.true.,TDA_W,TDA,BSE,singlet_manifold,triplet_manifold,eta, & nBas,nC,nO,nV,nR,nS,ERI,eHF,eG0T0,Omega,XpY,XmY,rho,EcAC) if(exchange_kernel) then EcAC(1) = 0.5d0*EcAC(1) EcAC(2) = 1.5d0*EcAC(1) end if write(*,*) write(*,*)'-------------------------------------------------------------------------------' write(*,'(2X,A50,F20.10)') 'AC@BSE@G0T0 correlation energy (singlet) =',EcAC(1) write(*,'(2X,A50,F20.10)') 'AC@BSE@G0T0 correlation energy (triplet) =',EcAC(2) write(*,'(2X,A50,F20.10)') 'AC@BSE@G0T0 correlation energy =',EcAC(1) + EcAC(2) write(*,'(2X,A50,F20.10)') 'AC@BSE@G0T0 total energy =',ENuc + ERHF + EcAC(1) + EcAC(2) write(*,*)'-------------------------------------------------------------------------------' write(*,*) end if end if end subroutine G0T0