subroutine USRG_self_energy(eta,nBas,nC,nO,nV,nR,nS,e,Om,rho,EcGM,SigC,Z) ! Compute correlation part of the self-energy implicit none include 'parameters.h' ! Input variables double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nC(nspin) integer,intent(in) :: nO(nspin) integer,intent(in) :: nV(nspin) integer,intent(in) :: nR(nspin) integer,intent(in) :: nS double precision,intent(in) :: e(nBas,nspin) double precision,intent(in) :: Om(nS) double precision,intent(in) :: rho(nBas,nBas,nS,nspin) ! Local variables integer :: ispin integer :: i,j,a,b integer :: p,q,r integer :: m double precision :: Dpim,Dqim,Dpam,Dqam,Diam double precision :: t1,t2 ! Output variables double precision,intent(out) :: EcGM double precision,intent(out) :: SigC(nBas,nBas,nspin) double precision,intent(out) :: Z(nBas,nspin) ! Initialize SigC(:,:,:) = 0d0 !--------------------! ! SRG-GW self-energy ! !--------------------! ! Occupied part of the correlation self-energy call wall_time(t1) !$OMP PARALLEL & !$OMP SHARED(SigC,rho,eta,nS,nC,nO,nBas,nR,e,Om) & !$OMP PRIVATE(ispin,m,i,q,p,Dpim,Dqim) & !$OMP DEFAULT(NONE) !$OMP DO do ispin=1,nspin do q=nC(ispin)+1,nBas-nR(ispin) do p=nC(ispin)+1,nBas-nR(ispin) do m=1,nS do i=nC(ispin)+1,nO(ispin) Dpim = e(p,ispin) - e(i,ispin) + Om(m) Dqim = e(q,ispin) - e(i,ispin) + Om(m) SigC(p,q,ispin) = SigC(p,q,ispin) & + rho(p,i,m,ispin)*rho(q,i,m,ispin)*(1d0-dexp(-eta*Dpim*Dpim)*dexp(-eta*Dqim*Dqim)) & *(Dpim + Dqim)/(Dpim*Dpim + Dqim*Dqim) end do end do end do end do end do !$OMP END DO !$OMP END PARALLEL call wall_time(t2) print *, "first loop", (t2-t1) ! Virtual part of the correlation self-energy call wall_time(t1) !$OMP PARALLEL & !$OMP SHARED(SigC,rho,eta,nS,nC,nO,nR,nBas,e,Om) & !$OMP PRIVATE(ispin,m,a,q,p,Dpam,Dqam) & !$OMP DEFAULT(NONE) !$OMP DO do ispin=1,nspin do q=nC(ispin)+1,nBas-nR(ispin) do p=nC(ispin)+1,nBas-nR(ispin) do m=1,nS do a=nO(ispin)+1,nBas-nR(ispin) Dpam = e(p,ispin) - e(a,ispin) - Om(m) Dqam = e(q,ispin) - e(a,ispin) - Om(m) SigC(p,q,ispin) = SigC(p,q,ispin) & + rho(p,a,m,ispin)*rho(q,a,m,ispin)*(1d0-exp(-eta*Dpam*Dpam)*exp(-eta*Dqam*Dqam)) & *(Dpam + Dqam)/(Dpam*Dpam + Dqam*Dqam) end do end do end do end do end do !$OMP END DO !$OMP END PARALLEL call wall_time(t2) print *, "second loop", (t2-t1) ! Initialize Z(:,:) = 0d0 do ispin=1,nspin do p=nC(ispin)+1,nBas-nR(ispin) do i=nC(ispin)+1,nO(ispin) do m=1,nS Dpim = e(p,ispin) - e(i,ispin) + Om(m) Z(p,ispin) = Z(p,ispin) - rho(p,i,m,ispin)**2*(1d0-dexp(-2d0*eta*Dpim*Dpim))/Dpim**2 end do end do end do end do ! Virtual part of the correlation self-energy do ispin=1,nspin do p=nC(ispin)+1,nBas-nR(ispin) do a=nO(ispin)+1,nBas-nR(ispin) do m=1,nS Dpam = e(p,ispin) - e(a,ispin) - Om(m) Z(p,ispin) = Z(p,ispin) - rho(p,a,m,ispin)**2*(1d0-dexp(-2d0*eta*Dpam*Dpam))/Dpam**2 end do end do end do end do ! Compute renormalization factor from derivative of SigC Z(:,:) = 1d0/(1d0 - Z(:,:)) ! Galitskii-Migdal correlation energy EcGM = 0d0 do ispin=1,nspin do i=nC(ispin)+1,nO(ispin) do a=nO(ispin)+1,nBas-nR(ispin) do m=1,nS Diam = e(a,ispin) - e(i,ispin) + Om(m) EcGM = EcGM - rho(a,i,m,ispin)*rho(a,i,m,ispin)*(1d0-exp(-2d0*eta*Diam*Diam))/Diam end do end do end do end do end subroutine