subroutine GGF2_self_energy_diag(eta,nBas,nC,nO,nV,nR,e,ERI,SigC,Z) ! Compute diagonal part of the GF2 self-energy and its renormalization factor implicit none include 'parameters.h' ! Input variables double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR double precision,intent(in) :: e(nBas) double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) ! Local variables integer :: i,j,a,b integer :: p double precision :: eps double precision :: num ! Output variables double precision,intent(out) :: SigC(nBas) double precision,intent(out) :: Z(nBas) ! Initialize SigC(:) = 0d0 Z(:) = 0d0 ! Compute GF2 self-energy do p=nC+1,nBas-nR do i=nC+1,nO do j=nC+1,nO do a=nO+1,nBas-nR eps = e(p) + e(a) - e(i) - e(j) num = 0.5d0*(ERI(p,a,i,j) - ERI(p,a,j,i))**2 SigC(p) = SigC(p) + num*eps/(eps**2 + eta**2) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do end do do p=nC+1,nBas-nR do i=nC+1,nO do a=nO+1,nBas-nR do b=nO+1,nBas-nR eps = e(p) + e(i) - e(a) - e(b) num = 0.5d0*(ERI(p,i,a,b) - ERI(p,i,b,a))**2 SigC(p) = SigC(p) + num*eps/(eps**2 + eta**2) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2 end do end do end do end do Z(:) = 1d0/(1d0 - Z(:)) end subroutine