subroutine GF2_QP_graph(eta,nBas,nC,nO,nV,nR,eHF,ERI,eGFlin,eOld,eGF,Z) ! Compute the graphical solution of the GF2 QP equation implicit none include 'parameters.h' ! Input variables double precision,intent(in) :: eta integer,intent(in) :: nBas integer,intent(in) :: nC integer,intent(in) :: nO integer,intent(in) :: nV integer,intent(in) :: nR double precision,intent(in) :: eHF(nBas) double precision,intent(in) :: eGFlin(nBas) double precision,intent(in) :: eOld(nBas) double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) ! Local variables integer :: p integer :: nIt integer,parameter :: maxIt = 64 double precision,parameter :: thresh = 1d-6 double precision,external :: GF2_SigC,GF2_dSigC double precision :: SigC,dSigC double precision :: f,df double precision :: w ! Output variables double precision,intent(out) :: eGF(nBas) double precision,intent(out) :: Z(nBas) ! Run Newton's algorithm to find the root write(*,*)'-----------------------------------------------------' write(*,'(A5,1X,A3,1X,A15,1X,A15,1X,A10)') 'Orb.','It.','e_GFlin (eV)','e_GF (eV)','Z' write(*,*)'-----------------------------------------------------' do p=nC+1,nBas-nR w = eGFlin(p) nIt = 0 f = 1d0 do while (abs(f) > thresh .and. nIt < maxIt) nIt = nIt + 1 SigC = GF2_SigC(p,w,eta,nBas,nC,nO,nV,nR,eOld,ERI) dSigC = GF2_dSigC(p,w,eta,nBas,nC,nO,nV,nR,eOld,ERI) f = w - eHF(p) - SigC df = 1d0/(1d0 - dSigC) w = w - df*f end do if(nIt == maxIt) then eGF(p) = eGFlin(p) write(*,'(I5,1X,I3,1X,F15.9,1X,F15.9,1X,F10.6,1X,A12)') p,nIt,eGFlin(p)*HaToeV,eGF(p)*HaToeV,Z(p),'Cvg Failed!' else eGF(p) = w Z(p) = df write(*,'(I5,1X,I3,1X,F15.9,1X,F15.9,1X,F10.6)') p,nIt,eGFlin(p)*HaToeV,eGF(p)*HaToeV,Z(p) end if end do end subroutine