4
1
mirror of https://github.com/pfloos/quack synced 2025-01-06 19:33:11 +01:00

fixed memory leak in phRPA

This commit is contained in:
AbdAmmar 2024-11-29 19:10:24 +01:00
parent 3c8f8291bd
commit fd4dc5b77e
5 changed files with 242 additions and 9 deletions

View File

@ -30,9 +30,7 @@ subroutine phLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
double precision,intent(out) :: XpY(nS,nS) double precision,intent(out) :: XpY(nS,nS)
double precision,intent(out) :: XmY(nS,nS) double precision,intent(out) :: XmY(nS,nS)
! Memory allocation
allocate(ApB(nS,nS),AmB(nS,nS),AmBSq(nS,nS),AmBIv(nS,nS),Z(nS,nS),tmp(nS,nS))
! Tamm-Dancoff approximation ! Tamm-Dancoff approximation
@ -45,6 +43,8 @@ subroutine phLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
else else
allocate(ApB(nS,nS),AmB(nS,nS),AmBSq(nS,nS),AmBIv(nS,nS),Z(nS,nS),tmp(nS,nS))
ApB(:,:) = Aph(:,:) + Bph(:,:) ApB(:,:) = Aph(:,:) + Bph(:,:)
AmB(:,:) = Aph(:,:) - Bph(:,:) AmB(:,:) = Aph(:,:) - Bph(:,:)
@ -82,6 +82,8 @@ subroutine phLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
! XmY = matmul(transpose(Z),AmBIv) ! XmY = matmul(transpose(Z),AmBIv)
! call DA(nS,1d0*sqrt(Om),XmY) ! call DA(nS,1d0*sqrt(Om),XmY)
deallocate(ApB,AmB,AmBSq,AmBIv,Z,tmp)
end if end if
! Compute the RPA correlation energy ! Compute the RPA correlation energy

64
src/cuda/src/a_d_at.cu Normal file
View File

@ -0,0 +1,64 @@
#include <stdio.h>
__global__ void A_D_At_kernel(int n, double *A, double *D, double *R) {
int i, j;
int k;
int in, ij;
int kn;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
while(i < n) {
in = i * n;
while(j < n) {
ij = in + j;
R[ij] = 0.0;
k = 0;
while(k < n) {
kn = k * n;
R[ij] += D[k] * U[i + kn] * U[j + kn];
k ++;
} // k
j += blockDim.y * gridDim.y;
} // j
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void A_D_At(int n, double *A, double *D, double *R) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching A_D_At_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
A_D_At_kernel<<<dimGrid, dimBlock>>>(n, A, D, R);
}

64
src/cuda/src/a_dinv_at.cu Normal file
View File

@ -0,0 +1,64 @@
#include <stdio.h>
__global__ void A_Dinv_At_kernel(int n, double *A, double *D, double *R) {
int i, j;
int k;
int in, ij;
int kn;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
while(i < n) {
in = i * n;
while(j < n) {
ij = in + j;
R[ij] = 0.0;
k = 0;
while(k < n) {
kn = k * n;
R[ij] += D[k] * U[i + kn] * U[j + kn] / (D[k] + 1e-12);
k ++;
} // k
j += blockDim.y * gridDim.y;
} // j
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void A_Dinv_At(int n, double *A, double *D, double *R) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching A_Dinv_At_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
A_Dinv_At_kernel<<<dimGrid, dimBlock>>>(n, A, D, R);
}

View File

@ -0,0 +1,52 @@
#include <stdio.h>
#include <math.h>
__global__ void elementwise_dsqrt_inplace_kernel(int nS, double *A, int *nb_neg_sqrt) {
int i;
i = blockIdx.x * blockDim.x + threadIdx.x;
nb_neg_sqrt = 0;
while(i < nS) {
if(A[i] > 0.0) {
A[i] = sqrt(A[i]);
} else {
A[i] = sqrt(-A[i]);
}
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void elementwise_dsqrt_inplace(int nS, double *A, int *nb_neg_sqrt) {
int sBlocks = 32;
int nBlocks = (nS + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, 1, 1);
dim3 dimBlock(sBlocks, 1, 1);
printf("lunching elementwise_dsqrt_inplace_kernel with %d blocks and %d threads/block\n",
nBlocks, sBlocks);
elementwise_dsqrt_inplace_kernel<<<dimGrid, dimBlock>>>(nS, A, nb_neg_sqrt);
}

View File

@ -49,7 +49,7 @@ void ph_drpa_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
double *d_ApB = NULL; double *d_ApB = NULL;
double *d_AmB = NULL; double *d_AmB = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_ApB, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__); check_Cuda_Errors(cudaMalloc((void**)&d_ApB, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_A-B, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__); check_Cuda_Errors(cudaMalloc((void**)&d_AmB, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0); cudaEventRecord(start, 0);
ph_dRPA_ApB_sing(nO, nV, nBas, nS, d_eps, d_ERI, d_ApB); ph_dRPA_ApB_sing(nO, nV, nBas, nS, d_eps, d_ERI, d_ApB);
@ -58,7 +58,7 @@ void ph_drpa_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
cudaEventRecord(stop, 0); cudaEventRecord(stop, 0);
cudaEventSynchronize(stop); cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop); cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on A & B kernels = %f msec\n", elapsedTime); printf("Time elapsed on AmB & ApB = %f msec\n", elapsedTime);
// free memory // free memory
@ -66,8 +66,7 @@ void ph_drpa_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
check_Cuda_Errors(cudaFree(d_ERI), "cudaFree", __FILE__, __LINE__); check_Cuda_Errors(cudaFree(d_ERI), "cudaFree", __FILE__, __LINE__);
// TODO // diagonalize A-B
// diagonalize A+B and A-B
int *d_info = NULL; int *d_info = NULL;
double *d_Omega = NULL; double *d_Omega = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_info, sizeof(int)), check_Cuda_Errors(cudaMalloc((void**)&d_info, sizeof(int)),
@ -76,12 +75,64 @@ void ph_drpa_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
"cudaMalloc", __FILE__, __LINE__); "cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0); cudaEventRecord(start, 0);
diag_dn_dsyevd(nS, d_info, d_Omega, d_A); diag_dn_dsyevd(nS, d_info, d_Omega, d_AmB);
check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__); check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__);
cudaEventRecord(stop, 0); cudaEventRecord(stop, 0);
cudaEventSynchronize(stop); cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop); cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on diagonalization = %f msec\n", elapsedTime); printf("Time elapsed on diag AmB = %f msec\n", elapsedTime);
// d_Omega <-- d_Omega^{0.5}
elementwise_dsqrt_inplace(nS, d_Omega);
// TODO
//int *d_nb_neg_sqrt = NULL;
//check_Cuda_Errors(cudaMalloc((void**)&d_nb_neg_sqrt, sizeof(int)),
// "cudaMalloc", __FILE__, __LINE__);
//int nb_neg_sqrt = 0;
//check_Cuda_Errors(cudaMemcpy(&nb_neg_sqrt, d_nb_neg_sqrt, sizeof(int), cudaMemcpyDeviceToHost),
// "cudaMemcpy", __FILE__, __LINE__);
//if (nb_neg_sqrt > 0) {
// printf("You may have instabilities in linear response: A-B is not positive definite!!\n");
// printf("nb of <= 0 elements = %d\n", nb_neg_sqrt);
//}
// TODO
// d_AmB (d_Omega)^{+0.5} (d_AmB)^T
// d_AmB (d_Omega)^{-0.5} (d_AmB)^T
double *d_AmBSq = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_AmBSq, nS * sizeof(double)),
"cudaMalloc", __FILE__, __LINE__);
double *d_AmBSqInv = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_AmBSqInv, nS * sizeof(double)),
"cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0);
A_D_At(nS, d_AmB, d_Omega, d_AmBSq);
A_Dinv_At(nS, d_AmB, d_Omega, d_AmBSqInv);
check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on d_AmBSq & d_AmBSqInv = %f msec\n", elapsedTime);
// TODO
//call dgemm('N','N',nS,nS,nS,1d0,ApB,size(ApB,1),AmBSq,size(AmBSq,1),0d0,tmp,size(tmp,1))
//call dgemm('N','N',nS,nS,nS,1d0,AmBSq,size(AmBSq,1),tmp,size(tmp,1),0d0,Z,size(Z,1))
//call diagonalize_matrix(nS,Z,Om)
//if(minval(Om) < 0d0) &
// call print_warning('You may have instabilities in linear response: negative excitations!!')
//Om = sqrt(Om)
//call dgemm('T','N',nS,nS,nS,1d0,Z,size(Z,1),AmBSq,size(AmBSq,1),0d0,XpY,size(XpY,1))
//call DA(nS,1d0/dsqrt(Om),XpY)
//call dgemm('T','N',nS,nS,nS,1d0,Z,size(Z,1),AmBIv,size(AmBIv,1),0d0,XmY,size(XmY,1))
//call DA(nS,1d0*dsqrt(Om),XmY)
// transfer data to CPU // transfer data to CPU