4
1
mirror of https://github.com/pfloos/quack synced 2024-06-19 03:36:42 +02:00

experimental files

This commit is contained in:
Pierre-Francois Loos 2023-06-29 18:54:00 +02:00
parent 552005f910
commit f5d6971e1f
14 changed files with 1085 additions and 16 deletions

View File

@ -13,7 +13,7 @@
# G0F2* evGF2* qsGF2* G0F3 evGF3
F F F F F
# G0W0* evGW* qsGW* SRG-qsGW ufG0W0 ufGW
T F F F T F
# G0T0 evGT qsGT
F F F
F F F F F F
# G0T0 evGT qsGT ehG0T0
F F F T
# * unrestricted version available

View File

@ -5,14 +5,14 @@
# CC: maxSCF thresh DIIS n_diis
64 0.0000001 T 5
# spin: TDA singlet triplet spin_conserved spin_flip
F T T T T
F T F T T
# GF: maxSCF thresh DIIS n_diis lin eta renorm reg
256 0.00001 T 5 T 0.0 0 F
# GW: maxSCF thresh DIIS n_diis lin eta COHSEX SOSEX TDA_W reg
256 0.00001 T 5 T 0.01 F F T F
256 0.00001 T 5 T 0.0 F F F F
# GT: maxSCF thresh DIIS n_diis lin eta TDA_T reg
10 0.00001 T 5 T 0.0 F F
# ACFDT: AC Kx XBS
F T T
# BSE: BSE dBSE dTDA evDyn ppBSE BSE2
F F T F F F
T T T F F F

259
src/GT/ehG0T0.f90 Normal file
View File

@ -0,0 +1,259 @@
subroutine ehG0T0(doACFDT,exchange_kernel,doXBS,BSE,BSE2,TDA_T,TDA,dBSE,dTDA,evDyn,ppBSE, &
singlet,triplet,linearize,eta,regularize,nBas,nC,nO,nV,nR,nS,ENuc,ERHF, &
ERI_AO,ERI_MO,dipole_int,PHF,cHF,eHF,Vxc,eGT)
! Perform ehG0T0 calculation
implicit none
include 'parameters.h'
include 'quadrature.h'
! Input variables
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: BSE
logical,intent(in) :: BSE2
logical,intent(in) :: ppBSE
logical,intent(in) :: TDA_T
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: evDyn
logical,intent(in) :: singlet
logical,intent(in) :: triplet
logical,intent(in) :: linearize
double precision,intent(in) :: eta
logical,intent(in) :: regularize
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_MO(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
double precision,intent(in) :: Vxc(nBas)
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: cHF(nBas,nBas)
double precision,intent(in) :: PHF(nBas,nBas)
! Local variables
logical :: print_W = .true.
integer :: ispin
double precision :: EcRPA
double precision :: EcBSE(nspin)
double precision :: EcAC(nspin)
double precision :: EcppBSE(nspin)
double precision :: EcGM
double precision,allocatable :: SigX(:)
double precision,allocatable :: SigC(:)
double precision,allocatable :: Z(:)
double precision,allocatable :: OmRPA(:)
double precision,allocatable :: XpY_RPA(:,:)
double precision,allocatable :: XmY_RPA(:,:)
double precision,allocatable :: rhoL_RPA(:,:,:)
double precision,allocatable :: rhoR_RPA(:,:,:)
double precision,allocatable :: eGTlin(:)
! Output variables
double precision :: eGT(nBas)
! Hello world
write(*,*)
write(*,*)'************************************************'
write(*,*)'| One-shot eh G0T0 calculation |'
write(*,*)'************************************************'
write(*,*)
! Initialization
EcRPA = 0d0
! TDA for T
if(TDA_T) then
write(*,*) 'Tamm-Dancoff approximation for eh T-matrix!'
write(*,*)
end if
! TDA
if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*)
end if
! Spin manifold
ispin = 2
! Memory allocation
allocate(SigC(nBas),SigX(nBas),Z(nBas),OmRPA(nS),XpY_RPA(nS,nS),XmY_RPA(nS,nS), &
rhoL_RPA(nBas,nBas,nS),rhoR_RPA(nBas,nBas,nS),eGTlin(nBas))
!-------------------!
! Compute screening !
!-------------------!
call linear_response(ispin,.false.,TDA_T,eta,nBas,nC,nO,nV,nR,nS,1d0, &
eHF,ERI_MO,EcRPA,OmRPA,XpY_RPA,XmY_RPA)
if(print_W) call print_excitation('RPA@HF ',ispin,nS,OmRPA)
!--------------------------!
! Compute spectral weights !
!--------------------------!
call ehGT_excitation_density(nBas,nC,nO,nR,nS,ERI_MO,XpY_RPA,XmY_RPA,rhoL_RPA,rhoR_RPA)
!------------------------!
! Compute GW self-energy !
!------------------------!
call self_energy_exchange_diag(nBas,cHF,PHF,ERI_AO,SigX)
if(regularize) then
! call regularized_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS,eHF,OmRPA,rho_RPA,EcGM,SigC)
! call regularized_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS,eHF,OmRPA,rho_RPA,Z)
else
call ehGT_self_energy_diag(eta,nBas,nC,nO,nV,nR,nS,eHF,OmRPA,rhoL_RPA,rhoR_RPA,EcGM,SigC)
call ehGT_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS,eHF,OmRPA,rhoL_RPA,rhoR_RPA,Z)
end if
!-----------------------------------!
! Solve the quasi-particle equation !
!-----------------------------------!
eGTlin(:) = eHF(:) + Z(:)*(SigX(:) + SigC(:) - Vxc(:))
! Linearized or graphical solution?
if(linearize) then
write(*,*) ' *** Quasiparticle energies obtained by linearization *** '
write(*,*)
eGT(:) = eGTlin(:)
else
write(*,*) ' *** Quasiparticle energies obtained by root search (experimental) *** '
write(*,*)
! call QP_graph(nBas,nC,nO,nV,nR,nS,eta,eHF,SigX,Vxc,OmRPA,rho_RPA,eGWlin,eGW)
! Find all the roots of the QP equation if necessary
! call QP_roots(nBas,nC,nO,nV,nR,nS,eta,eHF,Omega,rho,eGWlin)
end if
! Compute the RPA correlation energy
call linear_response(ispin,.false.,TDA_T,eta,nBas,nC,nO,nV,nR,nS,1d0,eGT,ERI_MO, &
EcRPA,OmRPA,XpY_RPA,XmY_RPA)
!--------------!
! Dump results !
!--------------!
call print_ehG0T0(nBas,nO,eHF,ENuc,ERHF,SigC,Z,eGT,EcRPA,EcGM)
! Deallocate memory
! deallocate(SigC,Z,OmRPA,XpY_RPA,XmY_RPA,rho_RPA,eGWlin)
! Plot stuff
! call plot_GW(nBas,nC,nO,nV,nR,nS,eHF,eGW,OmRPA,rho_RPA)
! Perform BSE calculation
! if(BSE) then
! call Bethe_Salpeter(BSE2,TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,dipole_int,eHF,eGW,EcBSE)
! if(exchange_kernel) then
!
! EcBSE(1) = 0.5d0*EcBSE(1)
! EcBSE(2) = 1.5d0*EcBSE(2)
!
! end if
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0W0 correlation energy (singlet) =',EcBSE(1),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0W0 correlation energy (triplet) =',EcBSE(2),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0W0 correlation energy =',EcBSE(1) + EcBSE(2),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@G0W0 total energy =',ENuc + ERHF + EcBSE(1) + EcBSE(2),' au'
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
! if(doACFDT) then
! write(*,*) '-------------------------------------------------------------'
! write(*,*) ' Adiabatic connection version of BSE@G0W0 correlation energy '
! write(*,*) '-------------------------------------------------------------'
! write(*,*)
! if(doXBS) then
! write(*,*) '*** scaled screening version (XBS) ***'
! write(*,*)
! end if
! call ACFDT(exchange_kernel,doXBS,.true.,TDA_T,TDA,BSE,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,eHF,eGW,EcAC)
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0W0 correlation energy (singlet) =',EcAC(1),' au'
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0W0 correlation energy (triplet) =',EcAC(2),' au'
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0W0 correlation energy =',EcAC(1) + EcAC(2),' au'
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@G0W0 total energy =',ENuc + ERHF + EcAC(1) + EcAC(2),' au'
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
! end if
! if(ppBSE) then
! call Bethe_Salpeter_pp(TDA_T,TDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,dipole_int,eHF,eGW,EcppBSE)
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0W0 correlation energy (singlet) =',EcppBSE(1),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0W0 correlation energy (triplet) =',3d0*EcppBSE(2),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0W0 correlation energy =',EcppBSE(1) + 3d0*EcppBSE(2),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0W0 total energy =',ENuc + ERHF + EcppBSE(1) + 3d0*EcppBSE(2),' au'
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
! if(BSE) call ufBSE(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF,eGW)
! if(BSE) call ufXBSE(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF,OmRPA,rho_RPA)
! if(BSE) call XBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,dipole_int,eHF,eGW,EcBSE)
end subroutine

View File

@ -0,0 +1,53 @@
subroutine ehGT_excitation_density(nBas,nC,nO,nR,nS,ERI,XpY,XmY,rhoL,rhoR)
! Compute excitation densities
implicit none
! Input variables
integer,intent(in) :: nBas,nC,nO,nR,nS
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: XpY(nS,nS)
double precision,intent(in) :: XmY(nS,nS)
! Local variables
integer :: m,jb,p,q,j,b
! Output variables
double precision,intent(out) :: rhoL(nBas,nBas,nS)
double precision,intent(out) :: rhoR(nBas,nBas,nS)
rhoL(:,:,:) = 0d0
rhoR(:,:,:) = 0d0
!$OMP PARALLEL &
!$OMP SHARED(nC,nBas,nR,nO,nS,rhoL,rhoR,ERI,XpY,XmY) &
!$OMP PRIVATE(q,p,jb,m) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nBas-nR
do p=nC+1,nBas-nR
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
do m=1,nS
rhoL(p,q,m) = rhoL(p,q,m) &
+ ERI(p,j,b,q)*0.5d0*(XpY(m,jb) + XmY(m,jb)) &
+ ERI(p,b,j,q)*0.5d0*(XpY(m,jb) - XmY(m,jb))
rhoR(p,q,m) = rhoR(p,q,m) &
+ (2d0*ERI(p,j,b,q) - ERI(p,j,q,b))*0.5d0*(XpY(m,jb) + XmY(m,jb)) &
+ (2d0*ERI(p,b,j,q) - ERI(p,b,q,j))*0.5d0*(XpY(m,jb) - XmY(m,jb))
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
end subroutine

View File

@ -0,0 +1,61 @@
subroutine ehGT_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS,e,Om,rhoL,rhoR,Z)
! Compute renormalization factor for GW
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rhoL(nBas,nBas,nS)
double precision,intent(in) :: rhoR(nBas,nBas,nS)
! Local variables
integer :: p,i,a,m
double precision :: eps
! Output variables
double precision,intent(out) :: Z(nBas)
! Initialize
Z(:) = 0d0
! Occupied part of the correlation self-energy
do p=nC+1,nBas-nR
do i=nC+1,nO
do m=1,nS
eps = e(p) - e(i) + Om(m)
Z(p) = Z(p) - rhoL(p,i,m)*rhoR(p,i,m)*(eps/(eps**2 + eta**2))**2
end do
end do
end do
! Virtual part of the correlation self-energy
do p=nC+1,nBas-nR
do a=nO+1,nBas-nR
do m=1,nS
eps = e(p) - e(a) - Om(m)
Z(p) = Z(p) - rhoL(p,a,m)*rhoR(p,a,m)*(eps/(eps**2 + eta**2))**2
end do
end do
end do
! Compute renormalization factor from derivative of SigC
Z(:) = 1d0/(1d0 - Z(:))
end subroutine

View File

@ -0,0 +1,74 @@
subroutine ehGT_self_energy_diag(eta,nBas,nC,nO,nV,nR,nS,e,Om,rhoL,rhoR,EcGM,SigC)
! Compute diagonal of the correlation part of the self-energy
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rhoL(nBas,nBas,nS)
double precision,intent(in) :: rhoR(nBas,nBas,nS)
! Local variables
integer :: i,a,p,q,m
double precision :: eps
! Output variables
double precision,intent(out) :: SigC(nBas)
double precision,intent(out) :: EcGM
! Initialize
SigC(:) = 0d0
!-----------------------------
! GW self-energy
!-----------------------------
! Occupied part of the correlation self-energy
do p=nC+1,nBas-nR
do i=nC+1,nO
do m=1,nS
eps = e(p) - e(i) + Om(m)
SigC(p) = SigC(p) + rhoL(p,i,m)*rhoR(p,i,m)*eps/(eps**2 + eta**2)
end do
end do
end do
! Virtual part of the correlation self-energy
do p=nC+1,nBas-nR
do a=nO+1,nBas-nR
do m=1,nS
eps = e(p) - e(a) - Om(m)
SigC(p) = SigC(p) + rhoL(p,a,m)*rhoR(p,a,m)*eps/(eps**2 + eta**2)
end do
end do
end do
! GM correlation energy
EcGM = 0d0
do i=nC+1,nO
do a=nO+1,nBas-nR
do m=1,nS
eps = e(a) - e(i) + Om(m)
EcGM = EcGM - 2d0*rhoL(a,i,m)*rhoR(a,i,m)*eps/(eps**2 + eta**2)
end do
end do
end do
end subroutine

View File

@ -191,7 +191,7 @@ subroutine G0W0(doACFDT,exchange_kernel,doXBS,COHSEX,BSE,BSE2,TDA_W,TDA,dBSE,dTD
! Deallocate memory
deallocate(SigC,Z,OmRPA,XpY_RPA,XmY_RPA,rho_RPA,eGWlin)
! deallocate(SigC,Z,OmRPA,XpY_RPA,XmY_RPA,rho_RPA,eGWlin)
! Plot stuff
@ -280,4 +280,10 @@ subroutine G0W0(doACFDT,exchange_kernel,doXBS,COHSEX,BSE,BSE2,TDA_W,TDA,dBSE,dTD
end if
! if(BSE) call ufBSE(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF,eGW)
! if(BSE) call ufXBSE(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF,OmRPA,rho_RPA)
if(BSE) call XBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,dipole_int,eHF,eGW,EcBSE)
end subroutine G0W0

133
src/GW/XBSE.f90 Normal file
View File

@ -0,0 +1,133 @@
subroutine XBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eW,eGW,EcBSE)
! Compute the Bethe-Salpeter excitation energies
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: TDA_W
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: singlet
logical,intent(in) :: triplet
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: eW(nBas)
double precision,intent(in) :: eGW(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
! Local variables
integer :: ispin
integer :: isp_W
double precision :: EcRPA
double precision,allocatable :: OmRPA(:)
double precision,allocatable :: XpY_RPA(:,:)
double precision,allocatable :: XmY_RPA(:,:)
double precision,allocatable :: rho_RPA(:,:,:)
double precision,allocatable :: OmBSE(:,:)
double precision,allocatable :: XpY_BSE(:,:,:)
double precision,allocatable :: XmY_BSE(:,:,:)
double precision,allocatable :: KA_sta(:,:)
double precision,allocatable :: KB_sta(:,:)
double precision,allocatable :: W(:,:,:,:)
! Output variables
double precision,intent(out) :: EcBSE(nspin)
! Memory allocation
allocate(OmRPA(nS),XpY_RPA(nS,nS),XmY_RPA(nS,nS),rho_RPA(nBas,nBas,nS), &
KA_sta(nS,nS),KB_sta(nS,nS),OmBSE(nS,nspin),XpY_BSE(nS,nS,nspin),XmY_BSE(nS,nS,nspin))
!---------------------------------
! Compute (singlet) RPA screening
!---------------------------------
isp_W = 1
EcRPA = 0d0
call linear_response(isp_W,.true.,TDA_W,eta,nBas,nC,nO,nV,nR,nS,1d0,eW,ERI, &
EcRPA,OmRPA,XpY_RPA,XmY_RPA)
call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_RPA,rho_RPA)
call XBSE_static_kernel_KA(eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,OmRPA,rho_RPA,KA_sta,eW,eGW)
call XBSE_static_kernel_KB(eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,OmRPA,rho_RPA,KB_sta,eW)
!-------------------
! Singlet manifold
!-------------------
if(singlet) then
ispin = 1
EcBSE(ispin) = 0d0
! Compute BSE excitation energies
call linear_response_BSE(ispin,.true.,TDA,.true.,eta,nBas,nC,nO,nV,nR,nS,1d0,eW,ERI,KA_sta,KB_sta, &
EcBSE(ispin),OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
call print_excitation('BSE@GW ',ispin,nS,OmBSE(:,ispin))
call print_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int, &
OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
!-------------------------------------------------
! Compute the dynamical screening at the BSE level
!-------------------------------------------------
if(dBSE) then
call Bethe_Salpeter_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR,nS,eW,eW,dipole_int,OmRPA,rho_RPA, &
OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
end if
end if
!-------------------
! Triplet manifold
!-------------------
if(triplet) then
ispin = 2
EcBSE(ispin) = 0d0
! Compute BSE excitation energies
call linear_response_BSE(ispin,.true.,TDA,.true.,eta,nBas,nC,nO,nV,nR,nS,1d0,eW,ERI,KA_sta,KB_sta, &
EcBSE(ispin),OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
call print_excitation('BSE@GW ',ispin,nS,OmBSE(:,ispin))
call print_transition_vectors(.false.,nBas,nC,nO,nV,nR,nS,dipole_int, &
OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
!-------------------------------------------------
! Compute the dynamical screening at the BSE level
!-------------------------------------------------
if(dBSE) then
! Compute dynamic correction for BSE via perturbation theory (iterative or renormalized)
call Bethe_Salpeter_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR,nS,eW,eW,dipole_int,OmRPA,rho_RPA, &
OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
end if
end if
end subroutine

View File

@ -0,0 +1,119 @@
subroutine XBSE_static_kernel_KA(eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,Om,rho,WA,eW,eGW)
! Compute the BSE static kernel for the resonant block
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
double precision,intent(in) :: eW(nBas)
double precision,intent(in) :: eGW(nBas)
! Local variables
double precision :: chi
double precision :: eps
double precision :: num,den,ei,ea
integer :: i,j,k,a,b,c,ia,jb,m
double precision,external :: Kronecker_delta
! Output variables
double precision,intent(out) :: WA(nS,nS)
! Initialize
WA(:,:) = 0d0
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
! virtual quasiparticle term
ea = 0d0
do m=1,nS
do k=nC+1,nO
num = 1d0*rho(a,k,m)*rho(b,k,m)
den = eW(a) - eW(k) + Om(m)
ea = ea + Kronecker_delta(i,j)*num*den/(den**2+eta**2)
den = eW(b) - eW(k) + Om(m)
ea = ea + Kronecker_delta(i,j)*num*den/(den**2+eta**2)
end do
do c=nO+1,nBas-nR
num = 1d0*rho(a,c,m)*rho(b,c,m)
den = eW(a) - eW(c) - Om(m)
ea = ea + Kronecker_delta(i,j)*num*den/(den**2+eta**2)
den = eW(b) - eW(c) - Om(m)
ea = ea + Kronecker_delta(i,j)*num*den/(den**2+eta**2)
end do
end do
! occupied quasiparticle term
ei = 0d0
do m=1,nS
do k=nC+1,nO
num = 1d0*rho(i,k,m)*rho(j,k,m)
den = eW(i) - eW(k) + Om(m)
ei = ei + Kronecker_delta(a,b)*num*den/(den**2+eta**2)
den = eW(j) - eW(k) + Om(m)
ei = ei + Kronecker_delta(a,b)*num*den/(den**2+eta**2)
end do
do c=nO+1,nBas-nR
num = 1d0*rho(i,c,m)*rho(j,c,m)
den = eW(i) - eW(c) - Om(m)
ei = ei + Kronecker_delta(a,b)*num*den/(den**2+eta**2)
den = eW(j) - eW(c) - Om(m)
ei = ei + Kronecker_delta(a,b)*num*den/(den**2+eta**2)
end do
end do
! kernel term
chi = 0d0
do m=1,nS
eps = Om(m)**2 + eta**2
chi = chi + rho(i,j,m)*rho(a,b,m)*Om(m)/eps!&
! - rho(i,b,m)*rho(a,j,m)*Om(m)/eps
enddo
! WA(ia,jb) = WA(ia,jb) + lambda*ERI(i,b,j,a) - 4d0*lambda*chi &
! - (eGW(a) - eW(a))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
! + (eGW(i) - eW(i))*Kronecker_delta(i,j)*Kronecker_delta(a,b)
WA(ia,jb) = WA(ia,jb) - ea + ei + lambda*ERI(i,b,j,a) - 4d0*lambda*chi
enddo
enddo
enddo
enddo
end subroutine

View File

@ -0,0 +1,59 @@
subroutine XBSE_static_kernel_KB(eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,Omega,rho,KB)
! Compute the BSE static kernel for the coupling block
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: Omega(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
double precision :: chi
double precision :: eps
integer :: i,j,a,b,ia,jb,kc
! Output variables
double precision,intent(out) :: KB(nS,nS)
! Initialize
KB(:,:) = 0d0
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
chi = 0d0
do kc=1,nS
eps = Omega(kc)**2 + eta**2
chi = chi + rho(i,b,kc)*rho(a,j,kc)*Omega(kc)/eps &
- rho(i,a,kc)*rho(j,b,kc)*Omega(kc)/eps
enddo
KB(ia,jb) = KB(ia,jb) + lambda*ERI(i,j,b,a) - 4d0*lambda*chi
enddo
enddo
enddo
enddo
end subroutine

View File

@ -25,6 +25,7 @@ subroutine ufBSE(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF,eGW)
integer :: i,j,k,l
integer :: a,b,c,d
integer :: ia,jb,kc,iajb,kcld
integer,parameter :: maxH = 20
double precision :: tmp
integer :: n1h1p,n2h2p,nH
@ -66,7 +67,7 @@ subroutine ufBSE(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF,eGW)
H(:,:) = 0d0
!---------------------------!
! Compute GW supermatrix !
! Compute BSE supermatrix !
!---------------------------!
! !
! | A -Ve -Vh | !
@ -202,7 +203,7 @@ subroutine ufBSE(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF,eGW)
'|','#','|','Omega (eV)','|','Z','|'
write(*,*)'-------------------------------------------'
do s=1,nH
do s=1,min(nH,maxH)
if(Z(s) > 1d-7) &
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',s,'|',Om(s)*HaToeV,'|',Z(s),'|'

268
src/GW/ufXBSE.f90 Normal file
View File

@ -0,0 +1,268 @@
subroutine ufXBSE(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF,OmRPA,sERI)
! Unfolded BSE+ equations
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: OmRPA(nS)
double precision,intent(in) :: sERI(nBas,nBas,nS)
! Local variables
integer :: s
integer :: i,j,k,l
integer :: a,b,c,d
integer :: ia,jb,kc,iajb,kcld
integer,parameter :: maxH = 20
double precision :: eps1,eps2
double precision :: Ve,Vh,C2h2p
integer :: n1h1p,n2h2p,nH
double precision,external :: Kronecker_delta
double precision,allocatable :: H(:,:)
double precision,allocatable :: X(:,:)
double precision,allocatable :: Om(:)
double precision,allocatable :: Z(:)
! Output variables
! Hello world
write(*,*)
write(*,*)'**********************************************'
write(*,*)'| Unfolded BSE+ calculation |'
write(*,*)'**********************************************'
write(*,*)
! TDA for W
write(*,*) 'Tamm-Dancoff approximation by default!'
write(*,*)
! Dimension of the supermatrix
n1h1p = nO*nV
n2h2p = nO*nO*nV*nV
nH = n1h1p + n2h2p
! Memory allocation
allocate(H(nH,nH),X(nH,nH),Om(nH),Z(nH))
! Initialization
H(:,:) = 0d0
!---------------------------!
! Compute BSE+ supermatrix !
!---------------------------!
! !
! | A Ve-Vh | !
! H = | | !
! | Ve-Vh C2h2p | !
! !
!---------------------------!
!---------!
! Block A !
!---------!
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
H(ia,jb) = (eHF(a) - eHF(i))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
+ 2d0*ERI(i,b,a,j) - ERI(i,b,j,a)
do kc=1,nS
do l=nC+1,nO
eps1 = 1d0/(eHF(a) - eHF(l) + OmRPA(kc))
eps2 = 1d0/(eHF(b) - eHF(l) + OmRPA(kc))
H(ia,jb) = H(ia,jb) + Kronecker_delta(i,j)*sERI(a,l,kc)*sERI(b,l,kc)*(eps1+eps2)
enddo
do d=nO+1,nBas-nR
eps1 = 1d0/(- eHF(i) + eHF(d) + OmRPA(kc))
eps2 = 1d0/(- eHF(j) + eHF(d) + OmRPA(kc))
H(ia,jb) = H(ia,jb) + Kronecker_delta(a,b)*sERI(i,d,kc)*sERI(j,d,kc)*(eps1+eps2)
enddo
eps1 = 1d0/(eHF(a) - eHF(i) + OmRPA(kc))
eps2 = 1d0/(eHF(b) - eHF(j) + OmRPA(kc))
H(ia,jb) = H(ia,jb) - 2d0*sERI(i,a,kc)*sERI(j,b,kc)*(eps1+eps2)
end do
end do
end do
end do
end do
!----------------!
! Blocks Vp & Ve !
!----------------!
iajb=0
do i=nC+1,nO
do a=nO+1,nBas-nR
do j=nC+1,nO
do b=nO+1,nBas-nR
iajb = iajb + 1
kc = 0
do k=nC+1,nO
do c=nO+1,nBas-nR
kc = kc + 1
Ve = sqrt(2d0)*Kronecker_delta(k,j)*ERI(b,a,c,i)
Vh = sqrt(2d0)*Kronecker_delta(b,c)*ERI(a,k,i,j)
H(n1h1p+iajb,kc ) = Ve - Vh
H(kc ,n1h1p+iajb) = Ve - Vh
end do
end do
end do
end do
end do
end do
! iajb=0
! ia = 0
! do i=nC+1,nO
! do a=nO+1,nBas-nR
! ia = ia + 1
! do j=nC+1,nO
! do b=nO+1,nBas-nR
! iajb = iajb + 1
! kc = 0
! do k=nC+1,nO
! do c=nO+1,nBas-nR
! kc = kc + 1
! Ve = sqrt(2d0)*Kronecker_delta(k,j)*sERI(b,c,ia)
! Vh = sqrt(2d0)*Kronecker_delta(b,c)*sERI(k,j,ia)
! H(n1h1p+iajb,kc ) = Ve - Vh
! H(kc ,n1h1p+iajb) = Ve - Vh
!
! end do
! end do
! end do
! end do
! end do
! end do
!-------------!
! Block 2h2p !
!-------------!
iajb = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
do j=nC+1,nO
do b=nO+1,nBas-nR
iajb = iajb + 1
kcld = 0
do k=nC+1,nO
do c=nO+1,nBas-nR
do l=nC+1,nO
do d=nO+1,nBas-nR
kcld = kcld + 1
C2h2p = ((eHF(a) + eHF(b) - eHF(i) - eHF(j))*Kronecker_delta(i,k)*Kronecker_delta(a,c) &
+ 2d0*ERI(a,k,i,c))*Kronecker_delta(j,l)*Kronecker_delta(b,d)
H(n1h1p+iajb,n1h1p+kcld) = C2h2p
end do
end do
end do
end do
end do
end do
end do
end do
! iajb = 0
! ia = 0
! do i=nC+1,nO
! do a=nO+1,nBas-nR
! ia = ia + 1
! do j=nC+1,nO
! do b=nO+1,nBas-nR
! iajb = iajb + 1
! H(n1h1p+iajb,n1h1p+iajb) = Om(ia) + eHF(b) - eHF(j)
! end do
! end do
! end do
! end do
!-------------------------!
! Diagonalize supermatrix !
!-------------------------!
X(:,:) = H(:,:)
call diagonalize_matrix(nH,X,Om)
!-----------------!
! Compute weights !
!-----------------!
Z(:) = 0d0
do s=1,nH
do ia=1,n1h1p
Z(s) = Z(s) + X(ia,s)**2
end do
end do
!--------------!
! Dump results !
!--------------!
write(*,*)'-------------------------------------------'
write(*,*)' BSE+ excitation energies (eV) '
write(*,*)'-------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X)') &
'|','#','|','Omega (eV)','|','Z','|'
write(*,*)'-------------------------------------------'
do s=1,min(nH,maxH)
if(Z(s) > 1d-7) &
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',s,'|',Om(s)*HaToeV,'|',Z(s),'|'
enddo
write(*,*)'-------------------------------------------'
write(*,*)
end subroutine

View File

@ -17,6 +17,7 @@ program QuAcK
logical :: doG0F2,doevGF2,doqsGF2,doG0F3,doevGF3
logical :: doG0W0,doevGW,doqsGW,doufG0W0,doufGW,doSRGqsGW
logical :: doG0T0,doevGT,doqsGT
logical :: doehG0T0
integer :: nNuc,nBas,nBasCABS
integer :: nEl(nspin)
@ -169,7 +170,8 @@ program QuAcK
doG0F3,doevGF3, &
doG0W0,doevGW,doqsGW,doSRGqsGW, &
doufG0W0,doufGW, &
doG0T0,doevGT,doqsGT)
doG0T0,doevGT,doqsGT, &
doehG0T0)
! Read options for methods
@ -1099,6 +1101,8 @@ program QuAcK
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time for ufG0W0 = ',t_ufGW,' seconds'
write(*,*)
if(BSE) call ufBSE(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF,eG0W0)
end if
!------------------------------------------------------------------------
@ -1109,7 +1113,7 @@ program QuAcK
call cpu_time(start_ufGW)
call ufGW(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
call CCGW(maxSCF_CC,thresh_CC,nBas,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
! call CCGW(maxSCF_CC,thresh_CC,nBas,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call cpu_time(end_ufGW)
t_ufGW = end_ufGW - start_ufGW
@ -1219,6 +1223,35 @@ program QuAcK
end if
!------------------------------------------------------------------------
! Perform ehG0T0 calculatiom
!------------------------------------------------------------------------
eG0T0(:,:) = eHF(:,:)
if(doehG0T0) then
call cpu_time(start_G0T0)
if(unrestricted) then
print*,'!!! ehG0T0 NYI at the unrestricted level !!!'
else
call ehG0T0(doACFDT,exchange_kernel,doXBS,BSE,BSE2,TDA_W,TDA,dBSE,dTDA,evDyn,ppBSE,singlet,triplet, &
linGW,eta_GW,regGW,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_AO,ERI_MO,dipole_int_MO,PHF,cHF,eHF,Vxc,eG0T0)
end if
call cpu_time(end_G0T0)
t_G0T0 = end_G0T0 - start_G0T0
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time for G0T0 = ',t_G0T0,' seconds'
write(*,*)
end if
!------------------------------------------------------------------------
! Compute FCI
!------------------------------------------------------------------------

View File

@ -8,7 +8,8 @@ subroutine read_methods(doRHF,doUHF,doKS,doMOM, &
doG0F3,doevGF3, &
doG0W0,doevGW,doqsGW,doSRGqsGW, &
doufG0W0,doufGW, &
doG0T0,doevGT,doqsGT)
doG0T0,doevGT,doqsGT, &
doehG0T0)
! Read desired methods
@ -25,6 +26,7 @@ subroutine read_methods(doRHF,doUHF,doKS,doMOM, &
logical,intent(out) :: doG0F2,doevGF2,doqsGF2,doG0F3,doevGF3
logical,intent(out) :: doG0W0,doevGW,doqsGW,doSRGqsGW,doufG0W0,doufGW
logical,intent(out) :: doG0T0,doevGT,doqsGT
logical,intent(out) :: doehG0T0
! Local variables
@ -159,10 +161,11 @@ subroutine read_methods(doRHF,doUHF,doKS,doMOM, &
! Read GT methods
read(1,*)
read(1,*) answer1,answer2,answer3
if(answer1 == 'T') doG0T0 = .true.
if(answer2 == 'T') doevGT = .true.
if(answer3 == 'T') doqsGT = .true.
read(1,*) answer1,answer2,answer3,answer4
if(answer1 == 'T') doG0T0 = .true.
if(answer2 == 'T') doevGT = .true.
if(answer3 == 'T') doqsGT = .true.
if(answer4 == 'T') doehG0T0 = .true.
! Close file with geometry specification