4
1
mirror of https://github.com/pfloos/quack synced 2025-01-10 21:18:33 +01:00

missing files

This commit is contained in:
Pierre-Francois Loos 2023-07-18 15:07:39 +02:00
parent 7b06e8ea50
commit e150460d22
2 changed files with 406 additions and 0 deletions

223
src/GT/ACFDT_Tmatrix.f90 Normal file
View File

@ -0,0 +1,223 @@
subroutine ACFDT_Tmatrix(exchange_kernel,doXBS,dRPA,TDA_T,TDA,BSE,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS, &
nOOs,nVVs,nOOt,nVVt,Om1s,X1s,Y1s,Om2s,X2s,Y2s,rho1s,rho2s,Om1t,X1t,Y1t, &
Om2t,X2t,Y2t,rho1t,rho2t,ERI,eT,eGT,EcAC)
! Compute the correlation energy via the adiabatic connection fluctuation dissipation theorem for the T-matrix
implicit none
include 'parameters.h'
include 'quadrature.h'
! Input variables
logical,intent(in) :: doXBS
logical,intent(in) :: exchange_kernel
logical,intent(in) :: dRPA
logical,intent(in) :: TDA_T
logical,intent(in) :: TDA
logical,intent(in) :: BSE
logical,intent(in) :: singlet
logical,intent(in) :: triplet
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
integer,intent(in) :: nOOs
integer,intent(in) :: nOOt
integer,intent(in) :: nVVs
integer,intent(in) :: nVVt
double precision,intent(in) :: Om1s(nVVs)
double precision,intent(in) :: X1s(nVVs,nVVs)
double precision,intent(in) :: Y1s(nOOs,nVVs)
double precision,intent(in) :: Om2s(nOOs)
double precision,intent(in) :: X2s(nVVs,nOOs)
double precision,intent(in) :: Y2s(nOOs,nOOs)
double precision,intent(in) :: rho1s(nBas,nBas,nVVs)
double precision,intent(in) :: rho2s(nBas,nBas,nOOs)
double precision,intent(in) :: Om1t(nVVt)
double precision,intent(in) :: X1t(nVVt,nVVt)
double precision,intent(in) :: Y1t(nOOt,nVVt)
double precision,intent(in) :: Om2t(nOOt)
double precision,intent(in) :: X2t(nVVt,nOOt)
double precision,intent(in) :: Y2t(nOOt,nOOt)
double precision,intent(in) :: rho1t(nBas,nBas,nVVt)
double precision,intent(in) :: rho2t(nBas,nBas,nOOt)
double precision,intent(in) :: eT(nBas)
double precision,intent(in) :: eGT(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
! Local variables
integer :: ispin
integer :: isp_T
integer :: iblock
integer :: iAC
double precision :: lambda
double precision,allocatable :: Ec(:,:)
double precision :: EcRPA(nspin)
double precision,allocatable :: TAs(:,:)
double precision,allocatable :: TBs(:,:)
double precision,allocatable :: TAt(:,:)
double precision,allocatable :: TBt(:,:)
double precision,allocatable :: Om(:,:)
double precision,allocatable :: XpY(:,:,:)
double precision,allocatable :: XmY(:,:,:)
! Output variables
double precision,intent(out) :: EcAC(nspin)
! Memory allocation
allocate(TAs(nS,nS),TBs(nS,nS),TAt(nS,nS),TBt(nS,nS), &
Om(nS,nspin),XpY(nS,nS,nspin),XmY(nS,nS,nspin))
allocate(Ec(nAC,nspin))
! Antisymmetrized kernel version
if(exchange_kernel) then
write(*,*)
write(*,*) '*** Exchange kernel version ***'
write(*,*)
end if
EcAC(:) = 0d0
Ec(:,:) = 0d0
! Singlet manifold
if(singlet) then
ispin = 1
write(*,*) '--------------'
write(*,*) 'Singlet states'
write(*,*) '--------------'
write(*,*)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,'(2X,A15,1X,A30,1X,A30)') 'lambda','Ec(lambda)','Tr(K x P_lambda)'
write(*,*) '-----------------------------------------------------------------------------------'
do iAC=1,nAC
lambda = rAC(iAC)
if(doXBS) then
isp_T = 1
iblock = 3
call ppLR(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOs,nVVs,lambda,eT,ERI,Om1s,X1s,Y1s,Om2s,X2s,Y2s,EcRPA(isp_T))
call GTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI,X1s,Y1s,rho1s,X2s,Y2s,rho2s)
call static_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,Om1s,rho1s,Om2s,rho2s,TAs)
if(.not.TDA) call static_Tmatrix_B(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,Om1s,rho1s,Om2s,rho2s,TBs)
isp_T = 2
iblock = 4
call ppLR(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOt,nVVt,lambda,eT,ERI,Om1t,X1t,Y1t,Om2t,X2t,Y2t,EcRPA(isp_T))
call GTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI,X1t,Y1t,rho1t,X2t,Y2t,rho2t)
call static_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,Om1t,rho1t,Om2t,rho2t,TAt)
if(.not.TDA) call static_Tmatrix_B(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,Om1t,rho1t,Om2t,rho2t,TBt)
end if
call linear_response_BSE(ispin,.false.,TDA,BSE,eta,nBas,nC,nO,nV,nR,nS,lambda,eGT,ERI,TAt+TAs,TBt+TBs, &
EcAC(ispin),Om(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
call phACFDT_correlation_energy(ispin,exchange_kernel,nBas,nC,nO,nV,nR,nS,ERI,XpY(:,:,ispin),XmY(:,:,ispin),Ec(iAC,ispin))
write(*,'(2X,F15.6,1X,F30.15,1X,F30.15)') lambda,EcAC(ispin),Ec(iAC,ispin)
end do
EcAC(ispin) = 0.5d0*dot_product(wAC,Ec(:,ispin))
if(exchange_kernel) EcAC(ispin) = 0.5d0*EcAC(ispin)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,'(2X,A50,1X,F15.6)') ' Ec(AC) via Gauss-Legendre quadrature:',EcAC(ispin)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,*)
end if
! Triplet manifold
if(triplet) then
ispin = 2
write(*,*) '--------------'
write(*,*) 'Triplet states'
write(*,*) '--------------'
write(*,*)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,'(2X,A15,1X,A30,1X,A30)') 'lambda','Ec(lambda)','Tr(K x P_lambda)'
write(*,*) '-----------------------------------------------------------------------------------'
do iAC=1,nAC
lambda = rAC(iAC)
if(doXBS) then
isp_T = 1
iblock = 3
call ppLR(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOs,nVVs,lambda,eT,ERI,Om1s,X1s,Y1s,Om2s,X2s,Y2s,EcRPA(isp_T))
call GTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI,X1s,Y1s,rho1s,X2s,Y2s,rho2s)
call static_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,Om1s,rho1s,Om2s,rho2s,TAs)
if(.not.TDA) call static_Tmatrix_B(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,Om1s,rho1s,Om2s,rho2s,TBs)
isp_T = 2
iblock = 4
call ppLR(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOt,nVVt,lambda,eT,ERI,Om1t,X1t,Y1t,Om2t,X2t,Y2t,EcRPA(isp_T))
call GTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI,X1t,Y1t,rho1t,X2t,Y2t,rho2t)
call static_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,Om1t,rho1t,Om2t,rho2t,TAt)
if(.not.TDA) call static_Tmatrix_B(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,Om1t,rho1t,Om2t,rho2t,TBt)
end if
call linear_response_BSE(ispin,.false.,TDA,BSE,eta,nBas,nC,nO,nV,nR,nS,lambda,eGT,ERI,TAt-TAs,TBt-TBs, &
EcAC(ispin),Om(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
call phACFDT_correlation_energy(ispin,exchange_kernel,nBas,nC,nO,nV,nR,nS,ERI,XpY(:,:,ispin),XmY(:,:,ispin),Ec(iAC,ispin))
write(*,'(2X,F15.6,1X,F30.15,1X,F30.15)') lambda,EcAC(ispin),Ec(iAC,ispin)
end do
EcAC(ispin) = 0.5d0*dot_product(wAC,Ec(:,ispin))
if(exchange_kernel) EcAC(ispin) = 1.5d0*EcAC(ispin)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,'(2X,A50,1X,F15.6)') ' Ec(AC) via Gauss-Legendre quadrature:',EcAC(ispin)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,*)
end if
end subroutine

183
src/GW/GW_phACFDT.f90 Normal file
View File

@ -0,0 +1,183 @@
subroutine GW_phACFDT(exchange_kernel,doXBS,dRPA,TDA_W,TDA,BSE,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI,eW,e,EcAC)
! Compute the correlation energy via the adiabatic connection fluctuation dissipation theorem
implicit none
include 'parameters.h'
include 'quadrature.h'
! Input variables
logical,intent(in) :: doXBS
logical,intent(in) :: exchange_kernel
logical,intent(in) :: dRPA
logical,intent(in) :: TDA_W
logical,intent(in) :: TDA
logical,intent(in) :: BSE
logical,intent(in) :: singlet
logical,intent(in) :: triplet
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: eW(nBas)
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
! Local variables
integer :: ispin
integer :: isp_W
integer :: iAC
double precision :: lambda
double precision,allocatable :: Ec(:,:)
double precision :: EcRPA
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
double precision,allocatable :: KA(:,:)
double precision,allocatable :: KB(:,:)
double precision,allocatable :: OmRPA(:)
double precision,allocatable :: XpY_RPA(:,:)
double precision,allocatable :: XmY_RPA(:,:)
double precision,allocatable :: rho_RPA(:,:,:)
double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
! Output variables
double precision,intent(out) :: EcAC(nspin)
! Memory allocation
allocate(Ec(nAC,nspin))
allocate(KA(nS,nS),KB(nS,nS),OmRPA(nS),XpY_RPA(nS,nS),XmY_RPA(nS,nS),rho_RPA(nBas,nBas,nS))
allocate(Om(nS),XpY(nS,nS),XmY(nS,nS))
! Antisymmetrized kernel version
if(exchange_kernel) then
write(*,*)
write(*,*) '*** Exchange kernel version ***'
write(*,*)
end if
EcAC(:) = 0d0
Ec(:,:) = 0d0
! Compute (singlet) RPA screening
isp_W = 1
EcRPA = 0d0
call phLR(isp_W,.true.,TDA_W,eta,nBas,nC,nO,nV,nR,nS,1d0,eW,ERI,EcRPA,OmRPA,XpY_RPA,XmY_RPA)
call GW_excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_RPA,rho_RPA)
call BSE_static_kernel_KA(eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,OmRPA,rho_RPA,KA)
call BSE_static_kernel_KB(eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,OmRPA,rho_RPA,KB)
! Singlet manifold
if(singlet) then
ispin = 1
write(*,*) '--------------'
write(*,*) 'Singlet states'
write(*,*) '--------------'
write(*,*)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,'(2X,A15,1X,A30,1X,A30)') 'lambda','Ec(lambda)','Tr(K x P_lambda)'
write(*,*) '-----------------------------------------------------------------------------------'
do iAC=1,nAC
lambda = rAC(iAC)
if(doXBS) then
call phLR(isp_W,.true.,TDA_W,eta,nBas,nC,nO,nV,nR,nS,lambda,eW,ERI,EcRPA,OmRPA,XpY_RPA,XmY_RPA)
call GW_excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_RPA,rho_RPA)
call BSE_static_kernel_KA(eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,OmRPA,rho_RPA,KA)
call BSE_static_kernel_KB(eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,OmRPA,rho_RPA,KB)
end if
call linear_response_BSE(ispin,dRPA,TDA,BSE,eta,nBas,nC,nO,nV,nR,nS,lambda,e,ERI,KA,KB,EcAC(ispin),Om,XpY,XmY)
call phACFDT_correlation_energy(ispin,exchange_kernel,nBas,nC,nO,nV,nR,nS,ERI,XpY,XmY,Ec(iAC,ispin))
write(*,'(2X,F15.6,1X,F30.15,1X,F30.15)') lambda,EcAC(ispin),Ec(iAC,ispin)
end do
EcAC(ispin) = 0.5d0*dot_product(wAC,Ec(:,ispin))
if(exchange_kernel) EcAC(ispin) = 0.5d0*EcAC(ispin)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,'(2X,A50,1X,F15.6)') ' Ec(AC) via Gauss-Legendre quadrature:',EcAC(ispin)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,*)
end if
! Triplet manifold
if(triplet) then
ispin = 2
write(*,*) '--------------'
write(*,*) 'Triplet states'
write(*,*) '--------------'
write(*,*)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,'(2X,A15,1X,A30,1X,A30)') 'lambda','Ec(lambda)','Tr(K x P_lambda)'
write(*,*) '-----------------------------------------------------------------------------------'
do iAC=1,nAC
lambda = rAC(iAC)
if(doXBS) then
call phLR(isp_W,.true.,TDA_W,eta,nBas,nC,nO,nV,nR,nS,lambda,eW,ERI,EcRPA,OmRPA,XpY_RPA,XmY_RPA)
call GW_excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_RPA,rho_RPA)
call BSE_static_kernel_KA(eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,OmRPA,rho_RPA,KA)
call BSE_static_kernel_KB(eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,OmRPA,rho_RPA,KB)
end if
call linear_response_BSE(ispin,dRPA,TDA,BSE,eta,nBas,nC,nO,nV,nR,nS,lambda,e,ERI,KA,KB,EcAC(ispin),Om,XpY,XmY)
call phACFDT_correlation_energy(ispin,exchange_kernel,nBas,nC,nO,nV,nR,nS,ERI,XpY,XmY,Ec(iAC,ispin))
write(*,'(2X,F15.6,1X,F30.15,1X,F30.15)') lambda,EcAC(ispin),Ec(iAC,ispin)
end do
EcAC(ispin) = 0.5d0*dot_product(wAC,Ec(:,ispin))
if(exchange_kernel) EcAC(ispin) = 1.5d0*EcAC(ispin)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,'(2X,A50,1X,F15.6)') ' Ec(AC) via Gauss-Legendre quadrature:',EcAC(ispin)
write(*,*) '-----------------------------------------------------------------------------------'
write(*,*)
end if
end subroutine