diff --git a/src/GW/GW_ppBSE_dynamic_kernel_C.f90 b/src/GW/GW_ppBSE_dynamic_kernel_C.f90 new file mode 100644 index 0000000..23f4fe0 --- /dev/null +++ b/src/GW/GW_ppBSE_dynamic_kernel_C.f90 @@ -0,0 +1,139 @@ +subroutine GW_ppBSE_dynamic_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,eGW,Om,rho,OmBSE,KC_dyn,ZC_dyn) + +! Compute the dynamic part of the Bethe-Salpeter equation matrices + + implicit none + include 'parameters.h' + +! Input variables + + integer,intent(in) :: ispin + integer,intent(in) :: nBas + integer,intent(in) :: nC + integer,intent(in) :: nO + integer,intent(in) :: nV + integer,intent(in) :: nR + integer,intent(in) :: nS + integer,intent(in) :: nVV + double precision,intent(in) :: eta + double precision,intent(in) :: lambda + double precision,intent(in) :: eGW(nBas) + double precision,intent(in) :: Om(nS) + double precision,intent(in) :: rho(nBas,nBas,nS) + double precision,intent(in) :: OmBSE + +! Local variables + + double precision :: dem,num + integer :: m + integer :: a,b,c,d + integer :: ab,cd + +! Output variables + + double precision,intent(out) :: KC_dyn(nVV,nVV) + double precision,intent(out) :: ZC_dyn(nVV,nVV) + +! Initialization + + KC_dyn(:,:) = 0d0 + ZC_dyn(:,:) = 0d0 + +! Build dynamic A matrix + + if(ispin == 1) then + + ab = 0 + do a=nO+1,nBas-nR + do b=a,nBas-nR + ab = ab + 1 + + cd = 0 + do c=nO+1,nBas-nR + do d=c,nBas-nR + cd = cd + 1 + + do m=1,nS + + dem = OmBSE - eGW(c) - Om(m) - eGW(b) + num = rho(a,c,m)*rho(b,d,m) + + KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2) + ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 + + dem = OmBSE - eGW(c) - Om(m) - eGW(a) + num = rho(b,c,m)*rho(a,d,m) + + KC_dyn(ab,cd) = KC_dyn(ab,cd) - num*dem/(dem**2 + eta**2) + ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 + + dem = OmBSE - eGW(d) - Om(m) - eGW(a) + num = rho(a,c,m)*rho(b,d,m) + + KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2) + ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 + + dem = OmBSE - eGW(d) - Om(m) - eGW(b) + num = rho(b,c,m)*rho(a,d,m) + + KC_dyn(ab,cd) = KC_dyn(ab,cd) - num*dem/(dem**2 + eta**2) + ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 + + end do + + end do + end do + + end do + end do + + end if + + if(ispin == 2) then + + ab = 0 + do a=nO+1,nBas-nR + do b=a+1,nBas-nR + ab = ab + 1 + + cd = 0 + do c=nO+1,nBas-nR + do d=c+1,nBas-nR + cd = cd + 1 + + do m=1,nS + + dem = OmBSE - eGW(c) - Om(m) - eGW(b) + num = rho(a,c,m)*rho(b,d,m) + + KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2) + ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 + + dem = OmBSE - eGW(c) - Om(m) - eGW(a) + num = rho(b,c,m)*rho(a,d,m) + + KC_dyn(ab,cd) = KC_dyn(ab,cd) - num*dem/(dem**2 + eta**2) + ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 + + dem = OmBSE - eGW(d) - Om(m) - eGW(a) + num = rho(a,c,m)*rho(b,d,m) + + KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2) + ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 + + dem = OmBSE - eGW(d) - Om(m) - eGW(b) + num = rho(b,c,m)*rho(a,d,m) + + KC_dyn(ab,cd) = KC_dyn(ab,cd) - num*dem/(dem**2 + eta**2) + ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2 + + end do + + end do + end do + + end do + end do + + end if +end subroutine