4
1
mirror of https://github.com/pfloos/quack synced 2025-01-03 18:16:18 +01:00
This commit is contained in:
Pierre-Francois Loos 2020-09-23 09:46:44 +02:00
parent 2b7f31a340
commit ce10bbaf56
6 changed files with 334 additions and 15 deletions

View File

@ -9,11 +9,11 @@
# CIS CID CISD
F F F
# RPA RPAx ppRPA
F F F
T F F
# G0F2 evGF2 G0F3 evGF3
F F F F
# G0W0 evGW qsGW
T F F
F F F
# G0T0 evGT qsGT
F F F
# MCMP2

View File

@ -634,8 +634,16 @@ program QuAcK
if(doRPA) then
call cpu_time(start_RPA)
call RPA(doACFDT,exchange_kernel,singlet,triplet,0d0, &
nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
if(unrestricted) then
call UdRPA(doACFDT,exchange_kernel,spin_conserved,spin_flip,0d0,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
ERI_MO_aaaa,ERI_MO_aabb,ERI_MO_bbbb,ERI_MO_abab,eHF)
else
call dRPA(doACFDT,exchange_kernel,singlet,triplet,0d0,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
end if
call cpu_time(end_RPA)
t_RPA = end_RPA - start_RPA
@ -651,8 +659,16 @@ program QuAcK
if(doRPAx) then
call cpu_time(start_RPAx)
call RPAx(doACFDT,exchange_kernel,singlet,triplet,0d0, &
nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
if(unrestricted) then
call URPAx(doACFDT,exchange_kernel,spin_conserved,spin_flip,0d0,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
ERI_MO_aaaa,ERI_MO_aabb,ERI_MO_bbbb,ERI_MO_abab,eHF)
else
call RPAx(doACFDT,exchange_kernel,singlet,triplet,0d0,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
end if
call cpu_time(end_RPAx)
t_RPAx = end_RPAx - start_RPAx

View File

@ -1,5 +1,4 @@
subroutine RPAx(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,e)
subroutine RPAx(doACFDT,exchange_kernel,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,e)
! Perform random phase approximation calculation with exchange (aka TDHF)
@ -11,9 +10,9 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: singlet_manifold
logical,intent(in) :: singlet
double precision,intent(in) :: eta
logical,intent(in) :: triplet_manifold
logical,intent(in) :: triplet
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
@ -55,7 +54,7 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
! Singlet manifold
if(singlet_manifold) then
if(singlet) then
ispin = 1
@ -69,7 +68,7 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
! Triplet manifold
if(triplet_manifold) then
if(triplet) then
ispin = 2
@ -105,7 +104,7 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
write(*,*) '-------------------------------------------------------'
write(*,*)
call ACFDT(exchange_kernel,.false.,.false.,.false.,.false.,.false.,singlet_manifold,triplet_manifold,eta, &
call ACFDT(exchange_kernel,.false.,.false.,.false.,.false.,.false.,singlet,triplet,eta, &
nBas,nC,nO,nV,nR,nS,ERI,e,e,Omega,XpY,XmY,rho,EcAC)
if(exchange_kernel) then

152
src/QuAcK/URPAx.f90 Normal file
View File

@ -0,0 +1,152 @@
subroutine URPAx(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,e)
! Perform random phase approximation calculation with exchange (aka TDHF) in the unrestricted formalism
implicit none
include 'parameters.h'
include 'quadrature.h'
! Input variables
double precision,intent(in) :: eta
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: spin_conserved
logical,intent(in) :: spin_flip
integer,intent(in) :: nBas
integer,intent(in) :: nC(nspin)
integer,intent(in) :: nO(nspin)
integer,intent(in) :: nV(nspin)
integer,intent(in) :: nR(nspin)
integer,intent(in) :: nS(nspin)
double precision,intent(in) :: ENuc
double precision,intent(in) :: EUHF
double precision,intent(in) :: e(nBas,nspin)
double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_abab(nBas,nBas,nBas,nBas)
! Local variables
integer :: ispin
integer :: nS_aa,nS_bb,nS_sc
double precision,allocatable :: Omega_sc(:)
double precision,allocatable :: XpY_sc(:,:)
double precision,allocatable :: XmY_sc(:,:)
integer :: nS_ab,nS_ba,nS_sf
double precision,allocatable :: Omega_sf(:)
double precision,allocatable :: XpY_sf(:,:)
double precision,allocatable :: XmY_sf(:,:)
double precision :: rho_sc,rho_sf
double precision :: EcRPAx(nspin)
double precision :: EcAC(nspin)
! Hello world
write(*,*)
write(*,*)'*********************************************************************'
write(*,*)'| Unrestricted random phase approximation calculation with exchange |'
write(*,*)'*********************************************************************'
write(*,*)
! Initialization
EcRPAx(:) = 0d0
EcAC(:) = 0d0
! Spin-conserved transitions
if(spin_conserved) then
ispin = 1
! Memory allocation
nS_aa = nS(1)
nS_bb = nS(2)
nS_sc = nS_aa + nS_bb
allocate(Omega_sc(nS_sc),XpY_sc(nS_sc,nS_sc),XmY_sc(nS_sc,nS_sc))
call unrestricted_linear_response(ispin,.false.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,1d0,e, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,rho_sc,EcRPAx(ispin),Omega_sc,XpY_sc,XmY_sc)
call print_excitation('URPAx ',5,nS_sc,Omega_sc)
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
endif
! Spin-flip transitions
if(spin_flip) then
ispin = 2
! Memory allocation
nS_ab = (nO(1) - nC(1))*(nV(2) - nR(2))
nS_ba = (nO(2) - nC(2))*(nV(1) - nR(1))
nS_sf = nS_ab + nS_ba
allocate(Omega_sf(nS_sf),XpY_sf(nS_sf,nS_sf),XmY_sf(nS_sf,nS_sf))
call unrestricted_linear_response(ispin,.false.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sf,1d0,e, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,rho_sf,EcRPAx(ispin),Omega_sf,XpY_sf,XmY_sf)
call print_excitation('URPAx ',6,nS_sf,Omega_sf)
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
endif
! if(exchange_kernel) then
! EcRPAx(1) = 0.5d0*EcRPAx(1)
! EcRPAx(2) = 1.5d0*EcRPAx(2)
! end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'Tr@URPAx correlation energy (spin-conserved) =',EcRPAx(1)
write(*,'(2X,A50,F20.10)') 'Tr@URPAx correlation energy (spin-flip) =',EcRPAx(2)
write(*,'(2X,A50,F20.10)') 'Tr@URPAx correlation energy =',EcRPAx(1) + EcRPAx(2)
write(*,'(2X,A50,F20.10)') 'Tr@URPAx total energy =',ENuc + EUHF + EcRPAx(1) + EcRPAx(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the correlation energy via the adiabatic connection
! if(doACFDT) then
! write(*,*) '-------------------------------------------------------'
! write(*,*) 'Adiabatic connection version of RPAx correlation energy'
! write(*,*) '-------------------------------------------------------'
! write(*,*)
! call ACFDT(exchange_kernel,.false.,.false.,.false.,.false.,.false.,singlet,triplet,eta, &
! nBas,nC,nO,nV,nR,nS,ERI,e,e,Omega,XpY,XmY,rho,EcAC)
! if(exchange_kernel) then
! EcAC(1) = 0.5d0*EcAC(1)
! EcAC(2) = 1.5d0*EcAC(2)
! end if
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10)') 'AC@RPAx correlation energy (singlet) =',EcAC(1)
! write(*,'(2X,A50,F20.10)') 'AC@RPAx correlation energy (triplet) =',EcAC(2)
! write(*,'(2X,A50,F20.10)') 'AC@RPAx correlation energy =',EcAC(1) + EcAC(2)
! write(*,'(2X,A50,F20.10)') 'AC@RPAx total energy =',ENuc + EUHF + EcAC(1) + EcAC(2)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
end subroutine URPAx

152
src/QuAcK/UdRPA.f90 Normal file
View File

@ -0,0 +1,152 @@
subroutine UdRPA(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,e)
! Perform random phase approximation calculation with exchange (aka TDHF) in the unrestricted formalism
implicit none
include 'parameters.h'
include 'quadrature.h'
! Input variables
double precision,intent(in) :: eta
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: spin_conserved
logical,intent(in) :: spin_flip
integer,intent(in) :: nBas
integer,intent(in) :: nC(nspin)
integer,intent(in) :: nO(nspin)
integer,intent(in) :: nV(nspin)
integer,intent(in) :: nR(nspin)
integer,intent(in) :: nS(nspin)
double precision,intent(in) :: ENuc
double precision,intent(in) :: EUHF
double precision,intent(in) :: e(nBas,nspin)
double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_abab(nBas,nBas,nBas,nBas)
! Local variables
integer :: ispin
integer :: nS_aa,nS_bb,nS_sc
double precision,allocatable :: Omega_sc(:)
double precision,allocatable :: XpY_sc(:,:)
double precision,allocatable :: XmY_sc(:,:)
integer :: nS_ab,nS_ba,nS_sf
double precision,allocatable :: Omega_sf(:)
double precision,allocatable :: XpY_sf(:,:)
double precision,allocatable :: XmY_sf(:,:)
double precision :: rho_sc,rho_sf
double precision :: EcRPA(nspin)
double precision :: EcAC(nspin)
! Hello world
write(*,*)
write(*,*)'**************************************************************'
write(*,*)'| Unrestricted direct random phase approximation calculation |'
write(*,*)'**************************************************************'
write(*,*)
! Initialization
EcRPA(:) = 0d0
EcAC(:) = 0d0
! Spin-conserved transitions
if(spin_conserved) then
ispin = 1
! Memory allocation
nS_aa = nS(1)
nS_bb = nS(2)
nS_sc = nS_aa + nS_bb
allocate(Omega_sc(nS_sc),XpY_sc(nS_sc,nS_sc),XmY_sc(nS_sc,nS_sc))
call unrestricted_linear_response(ispin,.true.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,1d0,e, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,rho_sc,EcRPA(ispin),Omega_sc,XpY_sc,XmY_sc)
call print_excitation('URPA ',5,nS_sc,Omega_sc)
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
endif
! Spin-flip transitions
if(spin_flip) then
ispin = 2
! Memory allocation
nS_ab = (nO(1) - nC(1))*(nV(2) - nR(2))
nS_ba = (nO(2) - nC(2))*(nV(1) - nR(1))
nS_sf = nS_ab + nS_ba
allocate(Omega_sf(nS_sf),XpY_sf(nS_sf,nS_sf),XmY_sf(nS_sf,nS_sf))
call unrestricted_linear_response(ispin,.true.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sf,1d0,e, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,rho_sf,EcRPA(ispin),Omega_sf,XpY_sf,XmY_sf)
call print_excitation('URPA ',6,nS_sf,Omega_sf)
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
endif
! if(exchange_kernel) then
! EcRPA(1) = 0.5d0*EcRPA(1)
! EcRPA(2) = 1.5d0*EcRPA(2)
! end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'Tr@URPA correlation energy (spin-conserved) =',EcRPA(1)
write(*,'(2X,A50,F20.10)') 'Tr@URPA correlation energy (spin-flip) =',EcRPA(2)
write(*,'(2X,A50,F20.10)') 'Tr@URPA correlation energy =',EcRPA(1) + EcRPA(2)
write(*,'(2X,A50,F20.10)') 'Tr@URPA total energy =',ENuc + EUHF + EcRPA(1) + EcRPA(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the correlation energy via the adiabatic connection
! if(doACFDT) then
! write(*,*) '-------------------------------------------------------'
! write(*,*) 'Adiabatic connection version of RPA correlation energy'
! write(*,*) '-------------------------------------------------------'
! write(*,*)
! call ACFDT(exchange_kernel,.false.,.false.,.false.,.false.,.false.,singlet,triplet,eta, &
! nBas,nC,nO,nV,nR,nS,ERI,e,e,Omega,XpY,XmY,rho,EcAC)
! if(exchange_kernel) then
! EcAC(1) = 0.5d0*EcAC(1)
! EcAC(2) = 1.5d0*EcAC(2)
! end if
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10)') 'AC@RPA correlation energy (singlet) =',EcAC(1)
! write(*,'(2X,A50,F20.10)') 'AC@RPA correlation energy (triplet) =',EcAC(2)
! write(*,'(2X,A50,F20.10)') 'AC@RPA correlation energy =',EcAC(1) + EcAC(2)
! write(*,'(2X,A50,F20.10)') 'AC@RPA total energy =',ENuc + EUHF + EcAC(1) + EcAC(2)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
end subroutine UdRPA

View File

@ -1,4 +1,4 @@
subroutine RPA(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
subroutine dRPA(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,e)
! Perform a direct random phase approximation calculation
@ -125,4 +125,4 @@ subroutine RPA(doACFDT,exchange_kernel,singlet_manifold,triplet_manifold,eta, &
end if
end subroutine RPA
end subroutine dRPA