4
1
mirror of https://github.com/pfloos/quack synced 2024-12-22 12:23:50 +01:00

Merge branch 'master' of github.com:pfloos/QuAcK

This commit is contained in:
Pierre-Francois Loos 2024-09-10 16:44:05 +02:00
commit ba54a465a7
10 changed files with 767 additions and 230 deletions

View File

@ -64,6 +64,8 @@ subroutine RG0T0pp(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,TDA_T,TDA,dBSE,d
double precision,allocatable :: Z(:)
double precision,allocatable :: eGT(:)
double precision,allocatable :: eGTlin(:)
integer, allocatable :: supp_data_int(:)
double precision, allocatable :: supp_data_dbl(:)
double precision, allocatable :: Om(:), R(:,:)
@ -94,11 +96,11 @@ subroutine RG0T0pp(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,TDA_T,TDA,dBSE,d
! Dimensions of the pp-RPA linear reponse matrices
nOOs = nO*(nO + 1)/2
nVVs = nV*(nV + 1)/2
!nOOs = nO*(nO + 1)/2
!nVVs = nV*(nV + 1)/2
!nOOs = nO*nO
!nVVs = nV*nV
nOOs = nO*nO
nVVs = nV*nV
nOOt = nO*(nO - 1)/2
nVVt = nV*(nV - 1)/2
@ -118,8 +120,8 @@ subroutine RG0T0pp(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,TDA_T,TDA,dBSE,d
!----------------------------------------------
ispin = 1
iblock = 1
!iblock = 3
!iblock = 1
iblock = 3
! Compute linear response
@ -138,7 +140,19 @@ subroutine RG0T0pp(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,TDA_T,TDA,dBSE,d
!n_states = nOOs + 5
!n_states_diag = n_states + 4
!allocate(Om(nOOs+nVVs), R(nOOs+nVVs,n_states_diag))
!call ppLR_davidson(iblock, TDA_T, nC, nO, nR, nOrb, nOOs, nVVs, 1.d0, eHF, 0.d0, ERI, Om, R, n_states, n_states_diag, "RPA")
!allocate(supp_data_dbl(1), supp_data_int(1))
!supp_data_int(1) = 0
!supp_data_dbl(1) = 0.d0
!call ppLR_davidson(iblock, TDA_T, nC, nO, nR, nOrb, nOOs, nVVs, &
! 1.d0, & ! lambda
! eHF(1), &
! 0.d0, & ! eF
! ERI(1,1,1,1), &
! supp_data_int(1), 1, &
! supp_data_dbl(1), 1, &
! Om(1), R(1,1), n_states, n_states_diag, "RPA")
!deallocate(supp_data_dbl, supp_data_int)
!deallocate(Om, R)
!stop
if(print_T) call print_excitation_energies('ppRPA@RHF','2p (alpha-beta)',nVVs,Om1s)
@ -169,7 +183,19 @@ subroutine RG0T0pp(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,TDA_T,TDA,dBSE,d
!n_states = nOOt + 5
!n_states_diag = n_states + 4
!allocate(Om(nOOt+nVVt), R(nOOt+nVVt,n_states_diag))
!call ppLR_davidson(iblock, TDA_T, nC, nO, nR, nOrb, nOOt, nVVt, 1.d0, eHF, 0.d0, ERI, Om, R, n_states, n_states_diag, "RPA")
!allocate(supp_data_dbl(1), supp_data_int(1))
!supp_data_int(1) = 0
!supp_data_dbl(1) = 0.d0
!call ppLR_davidson(iblock, TDA_T, nC, nO, nR, nOrb, nOOt, nVVt, &
! 1.d0, & ! lambda
! eHF(1), &
! 0.d0, & ! eF
! ERI(1,1,1,1), &
! supp_data_int(1), 1, &
! supp_data_dbl(1), 1, &
! Om(1), R(1,1), n_states, n_states_diag, "RPA")
!deallocate(Om, R)
!deallocate(supp_data_dbl)
!stop
if(print_T) call print_excitation_energies('ppRPA@RHF','2p (alpha-alpha)',nVVt,Om1t)

View File

@ -1,4 +1,4 @@
subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eW,eGW,EcBSE)
subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS,ERI,dipole_int,eW,eGW,EcBSE)
! Compute the Bethe-Salpeter excitation energies at the pp level
@ -15,16 +15,16 @@ subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS
logical,intent(in) :: triplet
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: eW(nBas)
double precision,intent(in) :: eGW(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
double precision,intent(in) :: eW(nOrb)
double precision,intent(in) :: eGW(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: dipole_int(nOrb,nOrb,ncart)
! Local variables
@ -37,6 +37,10 @@ subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS
integer :: nOO
integer :: nVV
integer :: p, q, m
integer :: i_data, supp_data_dbl_size, supp_data_int_size
integer :: n_states, n_states_diag
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
@ -62,6 +66,10 @@ subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS
double precision,allocatable :: KC_sta(:,:)
double precision,allocatable :: KD_sta(:,:)
integer, allocatable :: supp_data_int(:)
double precision,allocatable :: supp_data_dbl(:)
double precision,allocatable :: Om(:), R(:,:)
! Output variables
double precision,intent(out) :: EcBSE(nspin)
@ -74,16 +82,16 @@ subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS
isp_W = 1
EcRPA = 0d0
allocate(OmRPA(nS),XpY_RPA(nS,nS),XmY_RPA(nS,nS),rho_RPA(nBas,nBas,nS), &
allocate(OmRPA(nS),XpY_RPA(nS,nS),XmY_RPA(nS,nS),rho_RPA(nOrb,nOrb,nS), &
Aph(nS,nS),Bph(nS,nS))
call phLR_A(isp_W,dRPA_W,nBas,nC,nO,nV,nR,nS,1d0,eW,ERI,Aph)
call phLR_A(isp_W,dRPA_W,nOrb,nC,nO,nV,nR,nS,1d0,eW,ERI,Aph)
if(.not.TDA_W) call phLR_B(isp_W,dRPA_W,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
if(.not.TDA_W) call phLR_B(isp_W,dRPA_W,nOrb,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,OmRPA,XpY_RPA,XmY_RPA)
call RGW_excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_RPA,rho_RPA)
call RGW_excitation_density(nOrb,nC,nO,nR,nS,ERI,XpY_RPA,rho_RPA)
deallocate(XpY_RPA,XmY_RPA,Aph,Bph)
@ -104,42 +112,100 @@ subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS
nOO = nO*(nO+1)/2
nVV = nV*(nV+1)/2
allocate(Om1(nVV),X1(nVV,nVV),Y1(nOO,nVV), &
Om2(nOO),X2(nVV,nOO),Y2(nOO,nOO), &
Bpp(nVV,nOO),Cpp(nVV,nVV),Dpp(nOO,nOO), &
KB_sta(nVV,nOO),KC_sta(nVV,nVV),KD_sta(nOO,nOO))
allocate(Om1(nVV),X1(nVV,nVV),Y1(nOO,nVV))
allocate(Om2(nOO),X2(nVV,nOO),Y2(nOO,nOO))
! Compute BSE excitation energies
call RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,1d0,ERI,OmRPA,rho_RPA,KC_sta)
call RGW_ppBSE_static_kernel_D(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,1d0,ERI,OmRPA,rho_RPA,KD_sta)
if(.not.TDA) call RGW_ppBSE_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,1d0,ERI,OmRPA,rho_RPA,KB_sta)
! ---
! LAPACK
! ---
allocate(Bpp(nVV,nOO),Cpp(nVV,nVV),Dpp(nOO,nOO))
allocate(KB_sta(nVV,nOO),KC_sta(nVV,nVV),KD_sta(nOO,nOO))
call RGW_ppBSE_static_kernel_C(ispin,eta,nOrb,nC,nO,nV,nR,nS,nVV,1d0,ERI,OmRPA,rho_RPA,KC_sta)
call RGW_ppBSE_static_kernel_D(ispin,eta,nOrb,nC,nO,nV,nR,nS,nOO,1d0,ERI,OmRPA,rho_RPA,KD_sta)
if(.not.TDA) call RGW_ppBSE_static_kernel_B(ispin,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,1d0,ERI,OmRPA,rho_RPA,KB_sta)
call ppLR_C(ispin,nBas,nC,nO,nV,nR,nVV,1d0,eGW,ERI,Cpp)
call ppLR_D(ispin,nBas,nC,nO,nV,nR,nOO,1d0,eGW,ERI,Dpp)
if(.not.TDA) call ppLR_B(ispin,nBas,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
call ppLR_C(ispin,nOrb,nC,nO,nV,nR,nVV,1d0,eGW,ERI,Cpp)
call ppLR_D(ispin,nOrb,nC,nO,nV,nR,nOO,1d0,eGW,ERI,Dpp)
if(.not.TDA) call ppLR_B(ispin,nOrb,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
Bpp(:,:) = Bpp(:,:) + KB_sta(:,:)
Cpp(:,:) = Cpp(:,:) + KC_sta(:,:)
Dpp(:,:) = Dpp(:,:) + KD_sta(:,:)
call ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcBSE(ispin))
deallocate(Bpp,Cpp,Dpp,KB_sta,KC_sta,KD_sta)
! TODO
!call ppLR_RGW_ppBSE_davidson(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcBSE(ispin))
print*, 'LAPACK:'
print*, Om2
print*, Om1
call ppLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nOO,nVV,dipole_int,Om1,X1,Y1,Om2,X2,Y2)
! ---
! ---
! Davidson
! ---
n_states = nOO + 5
n_states_diag = n_states + 4
allocate(Om(nOO+nVV), R(nOO+nVV,n_states_diag))
supp_data_int = 1
allocate(supp_data_int(supp_data_int_size))
supp_data_int(1) = nS
supp_data_dbl_size = nS + nOrb*nOrb*nS + 1
allocate(supp_data_dbl(supp_data_dbl_size))
! scalars
supp_data_dbl(1) = eta
i_data = 1
! rho_RPA
do m = 1, nS
do q = 1, nOrb
do p = 1, nOrb
i_data = i_data + 1
supp_data_dbl(i_data) = rho_RPA(p,q,m)
enddo
enddo
enddo
! OmRPA
do m = 1, nS
i_data = i_data + 1
supp_data_dbl(i_data) = OmRPA(m)
enddo
call ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, &
1.d0, & ! lambda
eGW(1), &
0.d0, & ! eF
ERI(1,1,1,1), &
supp_data_int(1), supp_data_int_size, &
supp_data_dbl(1), supp_data_dbl_size, &
Om(1), R(1,1), n_states, n_states_diag, "GW")
deallocate(Om, R)
deallocate(supp_data_dbl, supp_data_int)
stop
! ---
call ppLR_transition_vectors(.true.,nOrb,nC,nO,nV,nR,nOO,nVV,dipole_int,Om1,X1,Y1,Om2,X2,Y2)
!----------------------------------------------------!
! Compute the dynamical screening at the ppBSE level !
!----------------------------------------------------!
if(dBSE) &
call RGW_ppBSE_dynamic_perturbation(ispin,dTDA,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,eW,eGW,ERI,dipole_int,OmRPA,rho_RPA, &
call RGW_ppBSE_dynamic_perturbation(ispin,dTDA,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,eW,eGW,ERI,dipole_int,OmRPA,rho_RPA, &
Om1,X1,Y1,Om2,X2,Y2,KB_sta,KC_sta,KD_sta)
deallocate(Om1,X1,Y1,Om2,X2,Y2,Bpp,Cpp,Dpp,KB_sta,KC_sta,KD_sta)
deallocate(Om1,X1,Y1,Om2,X2,Y2)
end if
!-------------------
@ -159,40 +225,97 @@ subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS
nOO = nO*(nO-1)/2
nVV = nV*(nV-1)/2
allocate(Om1(nVV),X1(nVV,nVV),Y1(nOO,nVV), &
Om2(nOO),X2(nVV,nOO),Y2(nOO,nOO), &
Bpp(nVV,nOO),Cpp(nVV,nVV),Dpp(nOO,nOO), &
KB_sta(nVV,nOO),KC_sta(nVV,nVV),KD_sta(nOO,nOO))
allocate(Om1(nVV),X1(nVV,nVV),Y1(nOO,nVV))
allocate(Om2(nOO),X2(nVV,nOO),Y2(nOO,nOO))
! Compute BSE excitation energies
call RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,1d0,ERI,OmRPA,rho_RPA,KC_sta)
call RGW_ppBSE_static_kernel_D(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,1d0,ERI,OmRPA,rho_RPA,KD_sta)
if(.not.TDA) call RGW_ppBSE_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,1d0,ERI,OmRPA,rho_RPA,KB_sta)
! ---
! LAPACK
! ---
call ppLR_C(ispin,nBas,nC,nO,nV,nR,nVV,1d0,eGW,ERI,Cpp)
call ppLR_D(ispin,nBas,nC,nO,nV,nR,nOO,1d0,eGW,ERI,Dpp)
if(.not.TDA) call ppLR_B(ispin,nBas,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
allocate(Bpp(nVV,nOO),Cpp(nVV,nVV),Dpp(nOO,nOO))
allocate(KB_sta(nVV,nOO),KC_sta(nVV,nVV),KD_sta(nOO,nOO))
call RGW_ppBSE_static_kernel_C(ispin,eta,nOrb,nC,nO,nV,nR,nS,nVV,1d0,ERI,OmRPA,rho_RPA,KC_sta)
call RGW_ppBSE_static_kernel_D(ispin,eta,nOrb,nC,nO,nV,nR,nS,nOO,1d0,ERI,OmRPA,rho_RPA,KD_sta)
if(.not.TDA) call RGW_ppBSE_static_kernel_B(ispin,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,1d0,ERI,OmRPA,rho_RPA,KB_sta)
call ppLR_C(ispin,nOrb,nC,nO,nV,nR,nVV,1d0,eGW,ERI,Cpp)
call ppLR_D(ispin,nOrb,nC,nO,nV,nR,nOO,1d0,eGW,ERI,Dpp)
if(.not.TDA) call ppLR_B(ispin,nOrb,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
Bpp(:,:) = Bpp(:,:) + KB_sta(:,:)
Cpp(:,:) = Cpp(:,:) + KC_sta(:,:)
Dpp(:,:) = Dpp(:,:) + KD_sta(:,:)
call ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcBSE(ispin))
deallocate(Bpp,Cpp,Dpp,KB_sta,KC_sta,KD_sta)
!print*, 'LAPACK:'
!print*, Om2
!print*, Om1
! ---
! Davidson
! ---
!n_states = nOO + 5
!n_states_diag = n_states + 4
!allocate(Om(nOO+nVV), R(nOO+nVV,n_states_diag))
!supp_data_int = 1
!allocate(supp_data_int(supp_data_int_size))
!supp_data_int(1) = nS
!supp_data_dbl_size = nS + nOrb*nOrb*nS + 1
!allocate(supp_data_dbl(supp_data_dbl_size))
!! scalars
!supp_data_dbl(1) = eta
!i_data = 1
!! rho_RPA
!do m = 1, nS
! do q = 1, nOrb
! do p = 1, nOrb
! i_data = i_data + 1
! supp_data_dbl(i_data) = rho_RPA(p,q,m)
! enddo
! enddo
!enddo
!! OmRPA
!do m = 1, nS
! i_data = i_data + 1
! supp_data_dbl(i_data) = OmRPA(m)
!enddo
!call ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, &
! 1.d0, & ! lambda
! eGW(1), &
! 0.d0, & ! eF
! ERI(1,1,1,1), &
! supp_data_int(1), supp_data_int_size, &
! supp_data_dbl(1), supp_data_dbl_size, &
! Om(1), R(1,1), n_states, n_states_diag, "GW")
!deallocate(Om, R)
!deallocate(supp_data_dbl, supp_data_int)
!stop
! ---
EcBSE(ispin) = 3d0*EcBSE(ispin)
call ppLR_transition_vectors(.false.,nBas,nC,nO,nV,nR,nOO,nVV,dipole_int,Om1,X1,Y1,Om2,X2,Y2)
call ppLR_transition_vectors(.false.,nOrb,nC,nO,nV,nR,nOO,nVV,dipole_int,Om1,X1,Y1,Om2,X2,Y2)
!----------------------------------------------------!
! Compute the dynamical screening at the ppBSE level !
!----------------------------------------------------!
if(dBSE) &
call RGW_ppBSE_dynamic_perturbation(ispin,dTDA,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,eW,eGW,ERI,dipole_int,OmRPA,rho_RPA, &
call RGW_ppBSE_dynamic_perturbation(ispin,dTDA,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,eW,eGW,ERI,dipole_int,OmRPA,rho_RPA, &
Om1,X1,Y1,Om2,X2,Y2,KB_sta,KC_sta,KD_sta)
deallocate(Om1,X1,Y1,Om2,X2,Y2,Bpp,Cpp,Dpp,KB_sta,KC_sta,KD_sta)
deallocate(Om1,X1,Y1,Om2,X2,Y2)
end if

View File

@ -1,4 +1,4 @@
subroutine RGW_ppBSE_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Om,rho,KB)
subroutine RGW_ppBSE_static_kernel_B(ispin,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Om,rho,KB)
! Compute the VVOO block of the static screening W for the pp-BSE
@ -8,7 +8,7 @@ subroutine RGW_ppBSE_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambd
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
@ -18,9 +18,9 @@ subroutine RGW_ppBSE_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambd
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
double precision,intent(in) :: rho(nOrb,nOrb,nS)
! Local variables
@ -44,8 +44,8 @@ subroutine RGW_ppBSE_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambd
if(ispin == 1) then
ab = 0
do a=nO+1,nBas-nR
do b=a,nBas-nR
do a=nO+1,nOrb-nR
do b=a,nOrb-nR
ab = ab + 1
ij = 0
do i=nC+1,nO
@ -75,8 +75,8 @@ subroutine RGW_ppBSE_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambd
if(ispin == 2) then
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
do a=nO+1,nOrb-nR
do b=a+1,nOrb-nR
ab = ab + 1
ij = 0
do i=nC+1,nO

View File

@ -1,4 +1,4 @@
subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ERI,Om,rho,KC)
subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nOrb,nC,nO,nV,nR,nS,nVV,lambda,ERI,Om,rho,KC)
! Compute the VVVV block of the static screening W for the pp-BSE
@ -8,7 +8,7 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
@ -17,9 +17,9 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
double precision,intent(in) :: rho(nOrb,nOrb,nS)
! Local variables
@ -44,21 +44,21 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
if(ispin == 1) then
a0 = nBas - nR - nO
a0 = nOrb - nR - nO
lambda4 = 4.d0 * lambda
eta2 = eta * eta
allocate(tmp_m(nBas,nBas,nS))
allocate(tmp(nBas,nBas,nBas,nBas))
allocate(tmp_m(nOrb,nOrb,nS))
allocate(tmp(nOrb,nOrb,nOrb,nOrb))
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(m, c, a, eps) &
!$OMP SHARED(nS, nBas, eta2, Om, rho, tmp_m)
!$OMP SHARED(nS, nOrb, eta2, Om, rho, tmp_m)
!$OMP DO
do m = 1, nS
eps = Om(m) / (Om(m)*Om(m) + eta2)
do c = 1, nBas
do a = 1, nBas
do c = 1, nOrb
do a = 1, nOrb
tmp_m(a,c,m) = eps * rho(a,c,m)
enddo
enddo
@ -66,19 +66,19 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
!$OMP END DO
!$OMP END PARALLEL
call dgemm("N", "T", nBas*nBas, nBas*nBas, nS, 1.d0, &
tmp_m(1,1,1), nBas*nBas, rho(1,1,1), nBas*nBas, &
0.d0, tmp(1,1,1,1), nBas*nBas)
call dgemm("N", "T", nOrb*nOrb, nOrb*nOrb, nS, 1.d0, &
tmp_m(1,1,1), nOrb*nOrb, rho(1,1,1), nOrb*nOrb, &
0.d0, tmp(1,1,1,1), nOrb*nOrb)
deallocate(tmp_m)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(a, b, aa, ab, c, d, cd, tmp_ab) &
!$OMP SHARED(nO, nBas, nR, nS, a0, lambda4, tmp, KC)
!$OMP SHARED(nO, nOrb, nR, nS, a0, lambda4, tmp, KC)
!$OMP DO
do a = nO+1, nBas-nR
do a = nO+1, nOrb-nR
aa = a0 * (a - nO - 1) - (a - nO - 1) * (a - nO) / 2 - nO
do b = a, nBas-nR
do b = a, nOrb-nR
ab = aa + b
tmp_ab = lambda4
@ -87,8 +87,8 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
endif
cd = 0
do c = nO+1, nBas-nR
do d = c, nBas-nR
do c = nO+1, nOrb-nR
do d = c, nOrb-nR
cd = cd + 1
KC(ab,cd) = -tmp_ab * (tmp(a,c,b,d) + tmp(a,d,b,c))
@ -105,12 +105,12 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
deallocate(tmp)
! do a=nO+1,nBas-nR
! do b=a,nBas-nR
! do a=nO+1,nOrb-nR
! do b=a,nOrb-nR
! ab = ab + 1
! cd = 0
! do c=nO+1,nBas-nR
! do d=c,nBas-nR
! do c=nO+1,nOrb-nR
! do d=c,nOrb-nR
! cd = cd + 1
!
! chi = 0d0
@ -125,7 +125,7 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
! OpenMP implementation
! --- --- ---
!
! a0 = nBas - nR - nO
! a0 = nOrb - nR - nO
! lambda4 = 4.d0 * lambda
! eta2 = eta * eta
!
@ -141,11 +141,11 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
!
! !$OMP PARALLEL DEFAULT(NONE) &
! !$OMP PRIVATE(a, b, aa, ab, c, d, cd, m, tmp_ab) &
! !$OMP SHARED(nO, nBas, nR, nS, a0, lambda4, Om_tmp, rho, KC)
! !$OMP SHARED(nO, nOrb, nR, nS, a0, lambda4, Om_tmp, rho, KC)
! !$OMP DO
! do a = nO+1, nBas-nR
! do a = nO+1, nOrb-nR
! aa = a0 * (a - nO - 1) - (a - nO - 1) * (a - nO) / 2 - nO
! do b = a, nBas-nR
! do b = a, nOrb-nR
! ab = aa + b
!
! tmp_ab = lambda4
@ -154,8 +154,8 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
! endif
!
! cd = 0
! do c = nO+1, nBas-nR
! do d = c, nBas-nR
! do c = nO+1, nOrb-nR
! do d = c, nOrb-nR
! cd = cd + 1
!
! KC(ab,cd) = 0d0
@ -184,12 +184,12 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
! --- --- ---
!
! ab = 0
! do a=nO+1,nBas-nR
! do b=a,nBas-nR
! do a=nO+1,nOrb-nR
! do b=a,nOrb-nR
! ab = ab + 1
! cd = 0
! do c=nO+1,nBas-nR
! do d=c,nBas-nR
! do c=nO+1,nOrb-nR
! do d=c,nOrb-nR
! cd = cd + 1
!
! chi = 0d0
@ -215,21 +215,21 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
if(ispin == 2) then
a0 = nBas - nR - nO - 1
a0 = nOrb - nR - nO - 1
lambda4 = 4.d0 * lambda
eta2 = eta * eta
allocate(tmp_m(nBas,nBas,nS))
allocate(tmp(nBas,nBas,nBas,nBas))
allocate(tmp_m(nOrb,nOrb,nS))
allocate(tmp(nOrb,nOrb,nOrb,nOrb))
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(m, c, a, eps) &
!$OMP SHARED(nS, nBas, eta2, Om, rho, tmp_m)
!$OMP SHARED(nS, nOrb, eta2, Om, rho, tmp_m)
!$OMP DO
do m = 1, nS
eps = Om(m) / (Om(m)*Om(m) + eta2)
do c = 1, nBas
do a = 1, nBas
do c = 1, nOrb
do a = 1, nOrb
tmp_m(a,c,m) = eps * rho(a,c,m)
enddo
enddo
@ -237,24 +237,24 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
!$OMP END DO
!$OMP END PARALLEL
call dgemm("N", "T", nBas*nBas, nBas*nBas, nS, 1.d0, &
tmp_m(1,1,1), nBas*nBas, rho(1,1,1), nBas*nBas, &
0.d0, tmp(1,1,1,1), nBas*nBas)
call dgemm("N", "T", nOrb*nOrb, nOrb*nOrb, nS, 1.d0, &
tmp_m(1,1,1), nOrb*nOrb, rho(1,1,1), nOrb*nOrb, &
0.d0, tmp(1,1,1,1), nOrb*nOrb)
deallocate(tmp_m)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(a, b, aa, ab, c, d, cd) &
!$OMP SHARED(nO, nBas, nR, nS, a0, lambda4, tmp, KC)
!$OMP SHARED(nO, nOrb, nR, nS, a0, lambda4, tmp, KC)
!$OMP DO
do a = nO+1, nBas-nR
do a = nO+1, nOrb-nR
aa = a0 * (a - nO - 1) - (a - nO - 1) * (a - nO) / 2 - nO - 1
do b = a+1, nBas-nR
do b = a+1, nOrb-nR
ab = aa + b
cd = 0
do c = nO+1, nBas-nR
do d = c+1, nBas-nR
do c = nO+1, nOrb-nR
do d = c+1, nOrb-nR
cd = cd + 1
KC(ab,cd) = lambda4 * (-tmp(a,c,b,d) + tmp(a,d,b,c))
@ -272,7 +272,7 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
! OpenMP implementation
! --- --- ---
!
! a0 = nBas - nR - nO - 1
! a0 = nOrb - nR - nO - 1
! lambda4 = 4.d0 * lambda
! eta2 = eta * eta
!
@ -288,16 +288,16 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
!
! !$OMP PARALLEL DEFAULT(NONE) &
! !$OMP PRIVATE(a, b, aa, ab, c, d, cd, m) &
! !$OMP SHARED(nO, nBas, nR, nS, a0, lambda4, Om_tmp, rho, KC)
! !$OMP SHARED(nO, nOrb, nR, nS, a0, lambda4, Om_tmp, rho, KC)
! !$OMP DO
! do a = nO+1, nBas-nR
! do a = nO+1, nOrb-nR
! aa = a0 * (a - nO - 1) - (a - nO - 1) * (a - nO) / 2 - nO - 1
! do b = a+1, nBas-nR
! do b = a+1, nOrb-nR
! ab = aa + b
!
! cd = 0
! do c = nO+1, nBas-nR
! do d = c+1, nBas-nR
! do c = nO+1, nOrb-nR
! do d = c+1, nOrb-nR
! cd = cd + 1
!
! KC(ab,cd) = 0d0
@ -323,12 +323,12 @@ subroutine RGW_ppBSE_static_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,ER
! --- --- ---
!
! ab = 0
! do a=nO+1,nBas-nR
! do b=a+1,nBas-nR
! do a=nO+1,nOrb-nR
! do b=a+1,nOrb-nR
! ab = ab + 1
! cd = 0
! do c=nO+1,nBas-nR
! do d=c+1,nBas-nR
! do c=nO+1,nOrb-nR
! do d=c+1,nOrb-nR
! cd = cd + 1
!
! chi = 0d0

View File

@ -1,4 +1,4 @@
subroutine RGW_ppBSE_static_kernel_D(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,lambda,ERI,Om,rho,KD)
subroutine RGW_ppBSE_static_kernel_D(ispin,eta,nOrb,nC,nO,nV,nR,nS,nOO,lambda,ERI,Om,rho,KD)
! Compute the OOOO block of the static screening W for the pp-BSE
@ -8,7 +8,7 @@ subroutine RGW_ppBSE_static_kernel_D(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,lambda,ER
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
@ -17,9 +17,9 @@ subroutine RGW_ppBSE_static_kernel_D(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,lambda,ER
integer,intent(in) :: nOO
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
double precision,intent(in) :: rho(nOrb,nOrb,nS)
! Local variables

View File

@ -44,7 +44,6 @@ subroutine ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
double precision, external :: trace_matrix
N = nOO + nVV
allocate(M(N,N), Z(N,N), Om(N))

402
src/LR/ppLR_GW_davidson.f90 Normal file
View File

@ -0,0 +1,402 @@
! ---
subroutine ppLR_GW_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, nS, lambda, e, eF, n_states_diag, &
ERI, eta, rho, Om, U, W)
implicit none
integer, intent(in) :: ispin
integer, intent(in) :: n_states_diag
integer, intent(in) :: nOO, nVV, nOrb, nC, nO, nR, nS
double precision, intent(in) :: lambda, eF, eta
double precision, intent(in) :: e(nOrb)
double precision, intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision, intent(in) :: rho(nOrb,nOrb,nS), Om(nS)
double precision, intent(in) :: U(nOO+nVV,n_states_diag)
double precision, intent(out) :: W(nOO+nVV,n_states_diag)
integer :: i, j, ij, k, l, kl
integer :: a, b, c, d, ab, cd
integer :: m
integer :: state
double precision :: mat_tmp, chi, eps
double precision, external :: Kronecker_delta
if(ispin .eq. 1) then
ab = 0
do a = nO+1, nOrb-nR
do b = a, nOrb-nR
ab = ab + 1
do state = 1, n_states_diag
W(ab,state) = 0.d0
cd = 0
do c = nO+1, nOrb-nR
do d = c, nOrb-nR
cd = cd + 1
mat_tmp = (e(a) + e(b) - eF) * Kronecker_delta(a, c) * Kronecker_delta(b, d) &
+ lambda * (ERI(a,b,c,d) + ERI(a,b,d,c)) / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(c, d)))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(a,c,m) * rho(b,d,m) * Om(m) / eps &
- rho(a,d,m) * rho(b,c,m) * Om(m) / eps
enddo
mat_tmp = mat_tmp + 4.d0 * lambda * chi / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(c, d)))
W(ab,state) = W(ab,state) + mat_tmp * U(cd,state)
enddo
enddo
ij = nVV
do i = nC+1, nO
do j = i, nO
ij = ij + 1
mat_tmp = lambda * (ERI(a,b,i,j) + ERI(a,b,j,i)) / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(i, j)))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(i,a,m) * rho(j,b,m) * Om(m) / eps &
- rho(i,b,m) * rho(a,j,m) * Om(m) / eps
enddo
mat_tmp = mat_tmp + 4.d0 * lambda * chi / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(i, j)))
W(ab,state) = W(ab,state) - mat_tmp * U(ij,state)
enddo
enddo
enddo ! state
enddo ! b
enddo ! a
! ---
ij = nVV
do i = nC+1, nO
do j = i, nO
ij = ij + 1
do state = 1, n_states_diag
W(ij,state) = 0.d0
ab = 0
do a = nO+1, nOrb-nR
do b = a, nOrb-nR
ab = ab + 1
mat_tmp = lambda * (ERI(a,b,i,j) + ERI(a,b,j,i)) / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(i, j)))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(i,a,m) * rho(j,b,m) * Om(m) / eps &
- rho(i,b,m) * rho(a,j,m) * Om(m) / eps
enddo
mat_tmp = mat_tmp + 4.d0 * lambda * chi / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(i, j)))
W(ij,state) = W(ij,state) + mat_tmp * U(ab,state)
enddo
enddo
kl = nVV
do k = nC+1, nO
do l = k, nO
kl = kl + 1
mat_tmp = - (e(i) + e(j) - eF) * Kronecker_delta(i, k) * Kronecker_delta(j, l) &
+ lambda * (ERI(i,j,k,l) + ERI(i,j,l,k)) / dsqrt( (1.d0 + Kronecker_delta(i, j)) &
* (1.d0 + Kronecker_delta(k, l)))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(i,k,m) * rho(j,l,m) * Om(m) / eps &
- rho(i,l,m) * rho(j,k,m) * Om(m) / eps
enddo
mat_tmp = mat_tmp + 4.d0 * lambda * chi / dsqrt( (1.d0 + Kronecker_delta(i, j)) &
* (1.d0 + Kronecker_delta(k, l)))
W(ij,state) = W(ij,state) - mat_tmp * U(kl,state)
enddo
enddo
enddo ! state
enddo ! j
enddo ! i
elseif(ispin .eq. 2) then
ab = 0
do a = nO+1, nOrb-nR
do b = a+1, nOrb-nR
ab = ab + 1
do state = 1, n_states_diag
W(ab,state) = 0.d0
cd = 0
do c = nO+1, nOrb-nR
do d = c+1, nOrb-nR
cd = cd + 1
mat_tmp = (e(a) + e(b) - eF) * Kronecker_delta(a, c) * Kronecker_delta(b, d) &
+ lambda * (ERI(a,b,c,d) - ERI(a,b,d,c))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(a,c,m) * rho(b,d,m) * Om(m) / eps &
+ rho(a,d,m) * rho(b,c,m) * Om(m) / eps
enddo
mat_tmp = mat_tmp + 4.d0 * lambda * chi
W(ab,state) = W(ab,state) + mat_tmp * U(cd,state)
enddo
enddo
ij = nVV
do i = nC+1, nO
do j = i+1, nO
ij = ij + 1
mat_tmp = lambda * (ERI(a,b,i,j) - ERI(a,b,j,i))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(i,a,m) * rho(j,b,m) * Om(m) / eps &
+ rho(i,b,m) * rho(a,j,m) * Om(m) / eps
end do
mat_tmp = mat_tmp + 4.d0 * lambda * chi
W(ab,state) = W(ab,state) - mat_tmp * U(ij,state)
enddo
enddo
enddo ! state
enddo ! b
enddo ! a
! ---
ij = nVV
do i = nC+1, nO
do j = i+1, nO
ij = ij + 1
do state = 1, n_states_diag
W(ij,state) = 0.d0
ab = 0
do a = nO+1, nOrb-nR
do b = a+1, nOrb-nR
ab = ab + 1
mat_tmp = lambda * (ERI(a,b,i,j) - ERI(a,b,j,i))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(i,a,m) * rho(j,b,m) * Om(m) / eps &
+ rho(i,b,m) * rho(a,j,m) * Om(m) / eps
end do
mat_tmp = mat_tmp + 4.d0 * lambda * chi
W(ij,state) = W(ij,state) + mat_tmp * U(ab,state)
enddo
enddo
kl = nVV
do k = nC+1, nO
do l = k+1, nO
kl = kl + 1
mat_tmp = - (e(i) + e(j) - eF) * Kronecker_delta(i, k) * Kronecker_delta(j, l) &
+ lambda * (ERI(i,j,k,l) - ERI(i,j,l,k))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(i,k,m) * rho(j,l,m) * Om(m) / eps &
+ rho(i,l,m) * rho(j,k,m) * Om(m) / eps
enddo
mat_tmp = mat_tmp + 4.d0 * lambda * chi
W(ij,state) = W(ij,state) - mat_tmp * U(kl,state)
enddo
enddo
enddo ! state
enddo ! j
enddo ! i
else
print*, ' Error in ppLR_GW_HR_calc'
print*, ' ispin is not supported'
print*, ' ispin = ', ispin
stop
endif
return
end
! ---
subroutine ppLR_GW_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, nS, lambda, e, eF, ERI, eta, rho, Om, H_diag)
implicit none
integer, intent(in) :: ispin
integer, intent(in) :: nOO, nVV, nOrb, nC, nO, nR, nS
double precision, intent(in) :: lambda, eF, eta
double precision, intent(in) :: e(nOrb)
double precision, intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision, intent(in) :: rho(nOrb,nOrb,nS), Om(nS)
double precision, intent(out) :: H_diag(nOO+nVV)
integer :: i, j, ij, k, l, kl
integer :: a, b, c, d, ab, cd
integer :: m
double precision :: chi, eps
double precision, external :: Kronecker_delta
if(ispin .eq. 1) then
ab = 0
do a = nO+1, nOrb-nR
do b = a, nOrb-nR
ab = ab + 1
cd = 0
do c = nO+1, nOrb-nR
do d = c, nOrb-nR
cd = cd + 1
if(a .ne. c) cycle
if(b .ne. d) cycle
H_diag(ab) = e(a) + e(b) - eF &
+ lambda * (ERI(a,b,c,d) + ERI(a,b,d,c)) / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(c, d)))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(a,c,m) * rho(b,d,m) * Om(m) / eps &
- rho(a,d,m) * rho(b,c,m) * Om(m) / eps
end do
H_diag(ab) = H_diag(ab) + 4.d0 * lambda * chi / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(c, d)))
enddo
enddo
enddo ! b
enddo ! a
ij = nVV
do i = nC+1, nO
do j = i, nO
ij = ij + 1
kl = 0
do k = nC+1, nO
do l = k, nO
kl = kl + 1
if(i .ne. k) cycle
if(j .ne. l) cycle
H_diag(ij) = e(i) + e(j) - eF &
- lambda * (ERI(i,j,k,l) + ERI(i,j,l,k)) / dsqrt( (1.d0 + Kronecker_delta(i, j)) &
* (1.d0 + Kronecker_delta(k, l)))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(i,k,m) * rho(j,l,m) * Om(m) / eps &
- rho(i,l,m) * rho(j,k,m) * Om(m) / eps
enddo
H_diag(ij) = H_diag(ij) - 4.d0 * lambda * chi / dsqrt( (1.d0 + Kronecker_delta(i, j)) &
* (1.d0 + Kronecker_delta(k, l)))
enddo
enddo
enddo ! j
enddo ! i
elseif(ispin .eq. 2) then
ab = 0
do a = nO+1, nOrb-nR
do b = a+1, nOrb-nR
ab = ab + 1
cd = 0
do c = nO+1, nOrb-nR
do d = c+1, nOrb-nR
cd = cd + 1
if(a .ne. c) cycle
if(b .ne. d) cycle
H_diag(ab) = e(a) + e(b) - eF + lambda * (ERI(a,b,c,d) - ERI(a,b,d,c))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(a,c,m) * rho(b,d,m) * Om(m) / eps &
+ rho(a,d,m) * rho(b,c,m) * Om(m) / eps
enddo
H_diag(ab) = H_diag(ab) + 4.d0 * lambda * chi
enddo
enddo
enddo ! b
enddo ! a
ij = nVV
do i = nC+1, nO
do j = i+1, nO
ij = ij + 1
kl = 0
do k = nC+1, nO
do l = k+1, nO
kl = kl + 1
if(i .ne. k) cycle
if(j .ne. l) cycle
H_diag(ij) = e(i) + e(j) - eF - lambda * (ERI(i,j,k,l) - ERI(i,j,l,k))
chi = 0.d0
do m = 1, nS
eps = Om(m)**2 + eta**2
chi = chi - rho(i,k,m) * rho(j,l,m) * Om(m) / eps &
+ rho(i,l,m) * rho(j,k,m) * Om(m) / eps
end do
H_diag(ij) = H_diag(ij) - 4.d0 * lambda * chi
enddo
enddo
enddo ! j
enddo ! i
else
print*, ' Error in ppLR_GW_H_diag'
print*, ' ispin is not supported'
print*, ' ispin = ', ispin
stop
endif
return
end
! ---

View File

@ -76,15 +76,15 @@ subroutine ppLR_RPA_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, n_
W(ij,state) = 0.d0
cd = 0
do c = nO+1, nOrb-nR
do d = c, nOrb-nR
cd = cd + 1
ab = 0
do a = nO+1, nOrb-nR
do b = a, nOrb-nR
ab = ab + 1
mat_tmp = lambda * (ERI(c,d,i,j) + ERI(c,d,j,i)) / dsqrt( (1.d0 + Kronecker_delta(c, d)) &
mat_tmp = lambda * (ERI(a,b,i,j) + ERI(a,b,j,i)) / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(i, j)))
W(ij,state) = W(ij,state) + mat_tmp * U(cd,state)
W(ij,state) = W(ij,state) + mat_tmp * U(ab,state)
enddo
enddo
@ -154,14 +154,14 @@ subroutine ppLR_RPA_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, n_
W(ij,state) = 0.d0
cd = 0
do c = nO+1, nOrb-nR
do d = c+1, nOrb-nR
cd = cd + 1
ab = 0
do a = nO+1, nOrb-nR
do b = a+1, nOrb-nR
ab = ab + 1
mat_tmp = lambda * (ERI(c,d,i,j) - ERI(c,d,j,i))
mat_tmp = lambda * (ERI(a,b,i,j) - ERI(a,b,j,i))
W(ij,state) = W(ij,state) + mat_tmp * U(cd,state)
W(ij,state) = W(ij,state) + mat_tmp * U(ab,state)
enddo
enddo
@ -230,14 +230,14 @@ subroutine ppLR_RPA_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, n_
W(ij,state) = 0.d0
cd = 0
do c = nO+1, nOrb-nR
do d = nO+1, nOrb-nR
cd = cd + 1
ab = 0
do a = nO+1, nOrb-nR
do b = nO+1, nOrb-nR
ab = ab + 1
mat_tmp = lambda * ERI(c,d,i,j)
mat_tmp = lambda * ERI(a,b,i,j)
W(ij,state) = W(ij,state) + mat_tmp * U(cd,state)
W(ij,state) = W(ij,state) + mat_tmp * U(ab,state)
enddo
enddo
@ -259,6 +259,7 @@ subroutine ppLR_RPA_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, n_
else
print*, ' Error in ppLR_RPA_HR_calc'
print*, ' ispin is not supported'
print*, ' ispin = ', ispin
stop
@ -445,6 +446,7 @@ subroutine ppLR_RPA_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, ERI
else
print*, ' Error in ppLR_RPA_H_diag'
print*, ' ispin is not supported'
print*, ' ispin = ', ispin
stop

View File

@ -1,7 +1,10 @@
! ---
subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF, ERI, Om, R, n_states, n_states_diag, kernel)
subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF, ERI, &
supp_data_int, supp_data_int_size, &
supp_data_dbl, supp_data_dbl_size, &
Om, R, n_states, n_states_diag, kernel)
!
! Extract the low n_states
@ -22,17 +25,22 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
integer, intent(in) :: nC, nO, nR, nOrb, nOO, nVV
integer, intent(in) :: n_states ! nb of physical states
integer, intent(in) :: n_states_diag ! nb of states used to get n_states
integer, intent(in) :: supp_data_int_size
integer, intent(in) :: supp_data_dbl_size
character(len=*), intent(in) :: kernel
double precision, intent(in) :: lambda, eF
double precision, intent(in) :: e(nOrb)
double precision, intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
integer, intent(in) :: supp_data_int(supp_data_int_size)
double precision, intent(in) :: supp_data_dbl(supp_data_dbl_size)
double precision, intent(out) :: Om(n_states)
double precision, intent(out) :: R(nOO+nVV,n_states_diag)
integer :: N, M
integer :: iter, itermax, itertot
integer :: shift1, shift2
integer :: i, j, ij, k, l, kl, a, b, ab, c, d, cd
integer :: i, j, k, l, ab
integer :: p, q, mm, i_data, nS
integer :: i_omax(n_states)
logical :: converged
character*(16384) :: write_buffer
@ -40,6 +48,8 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
double precision :: lambda_tmp
double precision :: to_print(2,n_states)
double precision :: mem
double precision :: eta
character(len=len(kernel)) :: kernel_name
double precision, allocatable :: H_diag(:)
double precision, allocatable :: W(:,:)
double precision, allocatable :: U(:,:)
@ -47,6 +57,7 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
double precision, allocatable :: residual_norm(:)
double precision, allocatable :: overlap(:)
double precision, allocatable :: S_check(:,:)
double precision, allocatable :: rho_tmp(:,:,:), Om_tmp(:)
double precision, external :: u_dot_u
@ -56,6 +67,8 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
itermax = 8
M = n_states_diag * itermax
call lower_case(trim(kernel), kernel_name)
if(M .ge. N) then
print*, 'N = ', N
print*, 'M = ', M
@ -71,7 +84,7 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
write(*,'(A40, I12)') 'Number of states = ', n_states
write(*,'(A40, I12)') 'Number of states in diagonalization = ', n_states_diag
write(*,'(A40, I12)') 'Number of basis functions = ', N
write(*,'(A40, A12)') 'Kernel: ', kernel_name
@ -82,14 +95,55 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
allocate(overlap(n_states_diag))
allocate(residual_norm(n_states_diag))
mem = 8.d0 * dble(nOrb + nOrb**4 + N*n_states) / 1d6
write(*,'(A40, F12.4)') 'I/O mem (MB) = ', mem
mem = 8.d0 * dble(nOrb + nOrb**4 + N*n_states) &
+ 8.d0 * dble(supp_data_dbl_size) + 4.d0 * dble(supp_data_int_size)
mem = 8.d0 * dble(N + N*M + N*M + M*M + M*M + M + n_states_diag + n_states_diag) / 1d6
write(*,'(A40, F12.4)') 'tmp mem (MB) = ', mem
write(*,'(A40, F12.4)') 'I/O mem (MB) = ', mem / (1024.d0*1024.d0)
mem = 8.d0 * dble(N + N*M + N*M + M*M + M*M + M + n_states_diag + n_states_diag)
write(*,'(A40, F12.4)') 'tmp mem (MB) = ', mem / (1024.d0*1024.d0)
call ppLR_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, ERI, H_diag, kernel)
if(kernel_name .eq. "rpa") then
call ppLR_RPA_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e(1), eF, &
ERI(1,1,1,1), H_diag(1))
elseif(kernel_name .eq. "gw") then
nS = supp_data_int(1)
allocate(rho_tmp(nOrb,nOrb,nS))
allocate(Om_tmp(nS))
eta = supp_data_dbl(1)
i_data = 1
do mm = 1, nS
do q = 1, nOrb
do p = 1, nOrb
i_data = i_data + 1
rho_tmp(p,q,mm) = supp_data_dbl(i_data)
enddo
enddo
enddo
do mm = 1, nS
i_data = i_data + 1
Om_tmp(mm) = supp_data_dbl(i_data)
enddo
call ppLR_GW_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, nS, lambda, e(1), eF, &
ERI(1,1,1,1), eta, rho_tmp(1,1,1), Om_tmp(1), H_diag(1))
!! TODO
!elseif(kernel_name .eq. "gf2") then
else
print*, ' kernel not supported', kernel
stop
endif
!print*, "H_diag:"
!do ab = 1, N
@ -187,8 +241,22 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
!enddo
!deallocate(S_check)
call ppLR_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, n_states_diag, &
ERI(1,1,1,1), U(1,shift1+1), W(1,shift1+1), kernel)
if(kernel_name .eq. "rpa") then
call ppLR_RPA_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e(1), eF, n_states_diag, &
ERI(1,1,1,1), &
U(1,shift1+1), W(1,shift1+1))
elseif(kernel_name .eq. "gw") then
call ppLR_GW_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, nS, lambda, e(1), eF, n_states_diag, &
ERI(1,1,1,1), eta, rho_tmp(1,1,1), Om_tmp(1), &
U(1,shift1+1), W(1,shift1+1))
!! TODO
!elseif(kernel_name .eq. "gf2") then
endif
else
@ -353,92 +421,9 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
deallocate(overlap)
deallocate(residual_norm)
return
end
! ---
subroutine ppLR_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, n_states_diag, ERI, U, W, kernel)
implicit none
integer, intent(in) :: ispin
integer, intent(in) :: n_states_diag
integer, intent(in) :: nOO, nVV, nOrb, nC, nO, nR
character(len=*), intent(in) :: kernel
double precision, intent(in) :: lambda, eF
double precision, intent(in) :: e(nOrb)
double precision, intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision, intent(in) :: U(nOO+nVV,n_states_diag)
double precision, intent(out) :: W(nOO+nVV,n_states_diag)
character(len=len(kernel)) :: kernel_name
call lower_case(trim(kernel), kernel_name)
if(kernel_name .eq. "rpa") then
call ppLR_RPA_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, n_states_diag, ERI, U, W)
!! TODO
!elseif(kernel_name .eq. "gw") then
! call ppLR_GW_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, n_states_diag, ERI, U, W)
!! TODO
!elseif(kernel_name .eq. "gf2") then
! call ppLR_GF2_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, n_states_diag, ERI, U, W)
else
print*, ' Error in routine ppLR_HR_calc'
print*, ' kernel not supported', kernel
stop
endif
return
end
! ---
subroutine ppLR_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, ERI, H_diag, kernel)
implicit none
integer, intent(in) :: ispin
integer, intent(in) :: nOO, nVV, nOrb, nC, nO, nR
character(len=*), intent(in) :: kernel
double precision, intent(in) :: lambda, eF
double precision, intent(in) :: e(nOrb)
double precision, intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision, intent(out) :: H_diag(nOO+nVV)
character(len=len(kernel)) :: kernel_name
call lower_case(trim(kernel), kernel_name)
if(kernel_name .eq. "rpa") then
call ppLR_RPA_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, ERI, H_diag)
!! TODO
!elseif(kernel_name .eq. "gw") then
! call ppLR_GW_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, ERI, H_diag)
!! TODO
!elseif(kernel_name .eq. "gf2") then
! call ppLR_GF2_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, ERI, H_diag)
else
print*, ' Error in routine ppLR_H_diag'
print*, ' kernel not supported', kernel
stop
if(kernel_name .eq. "gw") then
deallocate(rho_tmp)
deallocate(Om_tmp)
endif
return

View File

@ -465,7 +465,7 @@ subroutine impose_biorthog_degen_eigvec(n, deg_num, e0, L0, R0)
accu_nd = accu_nd + dabs(S(j,k))
enddo
enddo
if(accu_nd .gt. 1d-12) then
if(accu_nd .gt. 1d-7) then
print*, ' accu_nd =', accu_nd
print*, ' your strategy for degenerates orbitals failed !'
print*, m, 'deg on', i