mirror of
https://github.com/pfloos/quack
synced 2024-11-07 06:33:55 +01:00
individual energies seems to work
This commit is contained in:
parent
851ac5eb46
commit
b9cf1fe6d5
@ -31,7 +31,7 @@
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
# Ensemble weights: wEns(1),...,wEns(nEns-1)
|
||||
0.75 0.0 0.0
|
||||
1.00 0.0 0.0
|
||||
# Ncentered ?
|
||||
F
|
||||
# Parameters for CC weight-dependent exchange functional
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow,rho,Cx_choice,doNcentered,kappa,Ex)
|
||||
subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow,Cx_choice,doNcentered,Ex)
|
||||
|
||||
! Compute the unrestricted version of the curvature-corrected exchange functional
|
||||
|
||||
@ -14,17 +14,14 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
double precision,intent(in) :: kappa
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r,rI
|
||||
double precision :: e_p,dedr
|
||||
double precision :: Exrr,ExrI,ExrrI
|
||||
double precision :: r
|
||||
double precision :: dedr
|
||||
|
||||
double precision :: a1,b1,c1,d1,w1
|
||||
double precision :: a2,b2,c2,d2,w2
|
||||
@ -34,11 +31,6 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho
|
||||
|
||||
double precision,intent(out) :: Ex
|
||||
|
||||
! External variable
|
||||
|
||||
double precision,external :: electron_number
|
||||
|
||||
|
||||
! Defining enhancements factor for weight-dependent functionals
|
||||
|
||||
if(doNcentered) then
|
||||
@ -105,44 +97,19 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Ex = 0d0
|
||||
Exrr = 0d0
|
||||
ExrI = 0d0
|
||||
ExrrI = 0d0
|
||||
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rhow(iG))
|
||||
rI = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
e_p = Cx*r**(1d0/3d0)
|
||||
dedr = 1d0/3d0*Cx*r**(-2d0/3d0)
|
||||
|
||||
Exrr = Exrr - weight(iG)*dedr*r*r
|
||||
|
||||
if(rI > threshold) then
|
||||
|
||||
ExrI = ExrI + weight(iG)*e_p*rI
|
||||
ExrrI = ExrrI + weight(iG)*dedr*r*rI
|
||||
|
||||
endif
|
||||
Ex = Ex - weight(iG)*dedr*r*r
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
! De-scaling for N-centered ensemble
|
||||
|
||||
if(doNcentered) then
|
||||
|
||||
Exrr = kappa*Exrr
|
||||
ExrI = kappa*ExrI
|
||||
|
||||
endif
|
||||
|
||||
Ex = Exrr + ExrI + ExrrI
|
||||
|
||||
|
||||
end subroutine UCC_lda_exchange_individual_energy
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine US51_lda_exchange_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ex)
|
||||
subroutine US51_lda_exchange_individual_energy(nGrid,weight,rhow,Ex)
|
||||
|
||||
! Compute the restricted version of Slater's LDA exchange individual energy
|
||||
|
||||
@ -10,16 +10,12 @@ subroutine US51_lda_exchange_individual_energy(nGrid,weight,rhow,rho,doNcentered
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
logical,intent(in) :: doNcentered
|
||||
double precision,intent(in) :: kappa
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r,rI
|
||||
double precision :: e,dedr
|
||||
double precision :: Exrr,ExrI,ExrrI
|
||||
double precision :: r
|
||||
double precision :: dedr
|
||||
|
||||
! Output variables
|
||||
|
||||
@ -27,42 +23,19 @@ subroutine US51_lda_exchange_individual_energy(nGrid,weight,rhow,rho,doNcentered
|
||||
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Exrr = 0d0
|
||||
ExrI = 0d0
|
||||
ExrrI = 0d0
|
||||
Ex = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rhow(iG))
|
||||
rI = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
e = CxLSDA*r**(1d0/3d0)
|
||||
dedr = 1d0/3d0*CxLSDA*r**(-2d0/3d0)
|
||||
|
||||
Exrr = Exrr - weight(iG)*dedr*r*r
|
||||
|
||||
if(rI > threshold) then
|
||||
|
||||
ExrI = ExrI + weight(iG)*e*rI
|
||||
ExrrI = ExrrI + weight(iG)*dedr*r*rI
|
||||
|
||||
endif
|
||||
Ex = Ex - weight(iG)*dedr*r*r
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
! De-scaling for N-centered ensemble
|
||||
|
||||
if(doNcentered) then
|
||||
|
||||
Exrr = kappa*Exrr
|
||||
ExrI = kappa*ExrI
|
||||
|
||||
endif
|
||||
|
||||
Ex = Exrr + ExrI + ExrrI
|
||||
|
||||
end subroutine US51_lda_exchange_individual_energy
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ec)
|
||||
subroutine UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,doNcentered,Ec)
|
||||
|
||||
! Compute VWN3 LDA correlation potential
|
||||
|
||||
@ -11,9 +11,7 @@ subroutine UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid,nspin)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
logical,intent(in) :: doNcentered
|
||||
double precision,intent(in) :: kappa
|
||||
|
||||
! Local variables
|
||||
|
||||
@ -54,187 +52,187 @@ subroutine UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
|
||||
|
||||
! Initialization
|
||||
|
||||
Ec(:) = 0d0
|
||||
Ecrr(:) = 0d0
|
||||
EcrI(:) = 0d0
|
||||
EcrrI(:) = 0d0
|
||||
! Ec(:) = 0d0
|
||||
! Ecrr(:) = 0d0
|
||||
! EcrI(:) = 0d0
|
||||
! EcrrI(:) = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
! do iG=1,nGrid
|
||||
|
||||
ra = max(0d0,rhow(iG,1))
|
||||
rb = max(0d0,rhow(iG,2))
|
||||
|
||||
raI = max(0d0,rho(iG,1))
|
||||
rbI = max(0d0,rho(iG,2))
|
||||
! ra = max(0d0,rhow(iG,1))
|
||||
! rb = max(0d0,rhow(iG,2))
|
||||
|
||||
! raI = max(0d0,rho(iG,1))
|
||||
! rbI = max(0d0,rho(iG,2))
|
||||
!
|
||||
! spin-up contribution
|
||||
!
|
||||
! r = ra
|
||||
! rI = raI
|
||||
|
||||
r = ra
|
||||
rI = raI
|
||||
! if(r > threshold) then
|
||||
|
||||
if(r > threshold) then
|
||||
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
! x = sqrt(rs)
|
||||
!
|
||||
! x_f = x*x + b_f*x + c_f
|
||||
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
|
||||
! q_f = sqrt(4d0*c_f - b_f*b_f)
|
||||
!
|
||||
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
|
||||
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
|
||||
!
|
||||
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
! dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
x = sqrt(rs)
|
||||
! dxdx_f = 2d0*x + b_f
|
||||
|
||||
x_f = x*x + b_f*x + c_f
|
||||
xx0_f = x0_f*x0_f + b_f*x0_f + c_f
|
||||
q_f = sqrt(4d0*c_f - b_f*b_f)
|
||||
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
|
||||
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
|
||||
|
||||
ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
|
||||
- b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
|
||||
! decdr_f = drsdr*dxdrs*decdx_f
|
||||
|
||||
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
dxdrs = 0.5d0/sqrt(rs)
|
||||
! Ecrr(1) = Ecrr(1) - weight(iG)*decdr_f*r*r
|
||||
|
||||
dxdx_f = 2d0*x + b_f
|
||||
! if(rI > threshold) then
|
||||
|
||||
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
|
||||
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
|
||||
! EcrI(1) = EcrI(1) + weight(iG)*ec_f*rI
|
||||
! EcrrI(1) = EcrrI(1) + weight(iG)*decdr_f*r*rI
|
||||
!
|
||||
! end if
|
||||
|
||||
decdr_f = drsdr*dxdrs*decdx_f
|
||||
|
||||
Ecrr(1) = Ecrr(1) - weight(iG)*decdr_f*r*r
|
||||
|
||||
if(rI > threshold) then
|
||||
|
||||
EcrI(1) = EcrI(1) + weight(iG)*ec_f*rI
|
||||
EcrrI(1) = EcrrI(1) + weight(iG)*decdr_f*r*rI
|
||||
|
||||
end if
|
||||
|
||||
end if
|
||||
! end if
|
||||
|
||||
! up-down contribution
|
||||
!
|
||||
! r = ra + rb
|
||||
! rI = raI + rbI
|
||||
|
||||
r = ra + rb
|
||||
rI = raI + rbI
|
||||
! if(r > threshold) then
|
||||
|
||||
if(r > threshold) then
|
||||
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
! z = (ra - rb)/r
|
||||
! x = sqrt(rs)
|
||||
!
|
||||
! fz = (1d0 + z)**(4d0/3d0) + (1d0 - z)**(4d0/3d0) - 2d0
|
||||
! fz = fz/(2d0*(2d0**(1d0/3d0) - 1d0))
|
||||
!
|
||||
! d2fz = 4d0/(9d0*(2**(1d0/3d0) - 1d0))
|
||||
!
|
||||
! x_p = x*x + b_p*x + c_p
|
||||
! x_f = x*x + b_f*x + c_f
|
||||
! x_a = x*x + b_a*x + c_a
|
||||
!
|
||||
! xx0_p = x0_p*x0_p + b_p*x0_p + c_p
|
||||
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
|
||||
! xx0_a = x0_a*x0_a + b_a*x0_a + c_a
|
||||
!
|
||||
! q_p = sqrt(4d0*c_p - b_p*b_p)
|
||||
! q_f = sqrt(4d0*c_f - b_f*b_f)
|
||||
! q_a = sqrt(4d0*c_a - b_a*b_a)
|
||||
!
|
||||
! ec_p = a_p*( log(x**2/x_p) + 2d0*b_p/q_p*atan(q_p/(2d0*x + b_p)) &
|
||||
! - b_p*x0_p/xx0_p*( log((x - x0_p)**2/x_p) + 2d0*(b_p + 2d0*x0_p)/q_p*atan(q_p/(2d0*x + b_p)) ) )
|
||||
!
|
||||
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
|
||||
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
|
||||
!
|
||||
! ec_a = a_a*( log(x**2/x_a) + 2d0*b_a/q_a*atan(q_a/(2d0*x + b_a)) &
|
||||
! - b_a*x0_a/xx0_a*( log((x - x0_a)**2/x_a) + 2d0*(b_a + 2d0*x0_a)/q_a*atan(q_a/(2d0*x + b_a)) ) )
|
||||
!
|
||||
! ec_z = ec_p + ec_a*fz/d2fz*(1d0-z**4) + (ec_f - ec_p)*fz*z**4
|
||||
|
||||
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
z = (ra - rb)/r
|
||||
x = sqrt(rs)
|
||||
! dzdr = (1d0 - z)/r
|
||||
! dfzdz = (4d0/3d0)*((1d0 + z)**(1d0/3d0) - (1d0 - z)**(1d0/3d0))/(2d0*(2d0**(1d0/3d0) - 1d0))
|
||||
! dfzdr = dzdr*dfzdz
|
||||
|
||||
fz = (1d0 + z)**(4d0/3d0) + (1d0 - z)**(4d0/3d0) - 2d0
|
||||
fz = fz/(2d0*(2d0**(1d0/3d0) - 1d0))
|
||||
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
! dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
d2fz = 4d0/(9d0*(2**(1d0/3d0) - 1d0))
|
||||
! dxdx_p = 2d0*x + b_p
|
||||
! dxdx_f = 2d0*x + b_f
|
||||
! dxdx_a = 2d0*x + b_a
|
||||
|
||||
x_p = x*x + b_p*x + c_p
|
||||
x_f = x*x + b_f*x + c_f
|
||||
x_a = x*x + b_a*x + c_a
|
||||
! decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
|
||||
! - b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
|
||||
|
||||
xx0_p = x0_p*x0_p + b_p*x0_p + c_p
|
||||
xx0_f = x0_f*x0_f + b_f*x0_f + c_f
|
||||
xx0_a = x0_a*x0_a + b_a*x0_a + c_a
|
||||
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
|
||||
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
|
||||
|
||||
q_p = sqrt(4d0*c_p - b_p*b_p)
|
||||
q_f = sqrt(4d0*c_f - b_f*b_f)
|
||||
q_a = sqrt(4d0*c_a - b_a*b_a)
|
||||
! decdx_a = a_a*( 2d0/x - 4d0*b_a/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a &
|
||||
! - b_a*x0_a/xx0_a*( 2/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
|
||||
|
||||
ec_p = a_p*( log(x**2/x_p) + 2d0*b_p/q_p*atan(q_p/(2d0*x + b_p)) &
|
||||
- b_p*x0_p/xx0_p*( log((x - x0_p)**2/x_p) + 2d0*(b_p + 2d0*x0_p)/q_p*atan(q_p/(2d0*x + b_p)) ) )
|
||||
! decdr_p = drsdr*dxdrs*decdx_p
|
||||
! decdr_f = drsdr*dxdrs*decdx_f
|
||||
! decdr_a = drsdr*dxdrs*decdx_a
|
||||
|
||||
ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
|
||||
- b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
|
||||
! decdr = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdr/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdr*z**3 &
|
||||
! + (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdr*z**4 + 4d0*(ec_f - ec_p)*fz*dzdr*z**3
|
||||
|
||||
ec_a = a_a*( log(x**2/x_a) + 2d0*b_a/q_a*atan(q_a/(2d0*x + b_a)) &
|
||||
- b_a*x0_a/xx0_a*( log((x - x0_a)**2/x_a) + 2d0*(b_a + 2d0*x0_a)/q_a*atan(q_a/(2d0*x + b_a)) ) )
|
||||
! Ecrr(2) = Ecrr(2) - weight(iG)*decdr*r*r
|
||||
|
||||
ec_z = ec_p + ec_a*fz/d2fz*(1d0-z**4) + (ec_f - ec_p)*fz*z**4
|
||||
! if(rI > threshold) then
|
||||
|
||||
dzdr = (1d0 - z)/r
|
||||
dfzdz = (4d0/3d0)*((1d0 + z)**(1d0/3d0) - (1d0 - z)**(1d0/3d0))/(2d0*(2d0**(1d0/3d0) - 1d0))
|
||||
dfzdr = dzdr*dfzdz
|
||||
! EcrI(2) = EcrI(2) + weight(iG)*ec_z*rI
|
||||
! EcrrI(2) = EcrrI(2) + weight(iG)*decdr*r*rI
|
||||
!
|
||||
! end if
|
||||
|
||||
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
dxdx_p = 2d0*x + b_p
|
||||
dxdx_f = 2d0*x + b_f
|
||||
dxdx_a = 2d0*x + b_a
|
||||
|
||||
decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
|
||||
- b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
|
||||
|
||||
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
|
||||
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
|
||||
|
||||
decdx_a = a_a*( 2d0/x - 4d0*b_a/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a &
|
||||
- b_a*x0_a/xx0_a*( 2/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
|
||||
|
||||
decdr_p = drsdr*dxdrs*decdx_p
|
||||
decdr_f = drsdr*dxdrs*decdx_f
|
||||
decdr_a = drsdr*dxdrs*decdx_a
|
||||
|
||||
decdr = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdr/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdr*z**3 &
|
||||
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdr*z**4 + 4d0*(ec_f - ec_p)*fz*dzdr*z**3
|
||||
|
||||
Ecrr(2) = Ecrr(2) - weight(iG)*decdr*r*r
|
||||
|
||||
if(rI > threshold) then
|
||||
|
||||
EcrI(2) = EcrI(2) + weight(iG)*ec_z*rI
|
||||
EcrrI(2) = EcrrI(2) + weight(iG)*decdr*r*rI
|
||||
|
||||
end if
|
||||
|
||||
end if
|
||||
! end if
|
||||
|
||||
! spin-down contribution
|
||||
!
|
||||
! r = rb
|
||||
! rI = rbI
|
||||
!
|
||||
! if(r > threshold) then
|
||||
|
||||
r = rb
|
||||
rI = rbI
|
||||
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
! x = sqrt(rs)
|
||||
|
||||
if(r > threshold) then
|
||||
! x_f = x*x + b_f*x + c_f
|
||||
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
|
||||
! q_f = sqrt(4d0*c_f - b_f*b_f)
|
||||
|
||||
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
x = sqrt(rs)
|
||||
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
|
||||
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
|
||||
|
||||
x_f = x*x + b_f*x + c_f
|
||||
xx0_f = x0_f*x0_f + b_f*x0_f + c_f
|
||||
q_f = sqrt(4d0*c_f - b_f*b_f)
|
||||
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
! dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
|
||||
- b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
|
||||
! dxdx_f = 2d0*x + b_f
|
||||
|
||||
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
dxdrs = 0.5d0/sqrt(rs)
|
||||
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
|
||||
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
|
||||
|
||||
dxdx_f = 2d0*x + b_f
|
||||
! decdr_f = drsdr*dxdrs*decdx_f
|
||||
|
||||
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
|
||||
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
|
||||
! Ecrr(3) = Ecrr(3) - weight(iG)*decdr_f*r*r
|
||||
|
||||
decdr_f = drsdr*dxdrs*decdx_f
|
||||
! if(rI > threshold) then
|
||||
|
||||
Ecrr(3) = Ecrr(3) - weight(iG)*decdr_f*r*r
|
||||
! EcrI(3) = EcrI(3) + weight(iG)*ec_f*rI
|
||||
! EcrrI(3) = EcrrI(3) + weight(iG)*decdr_f*r*rI
|
||||
|
||||
if(rI > threshold) then
|
||||
! end if
|
||||
|
||||
EcrI(3) = EcrI(3) + weight(iG)*ec_f*rI
|
||||
EcrrI(3) = EcrrI(3) + weight(iG)*decdr_f*r*rI
|
||||
! end if
|
||||
|
||||
end if
|
||||
! end do
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
Ecrr(2) = Ecrr(2) - Ecrr(1) - Ecrr(3)
|
||||
EcrI(2) = EcrI(2) - EcrI(1) - EcrI(3)
|
||||
EcrrI(2) = EcrrI(2) - EcrrI(1) - EcrrI(3)
|
||||
! Ecrr(2) = Ecrr(2) - Ecrr(1) - Ecrr(3)
|
||||
! EcrI(2) = EcrI(2) - EcrI(1) - EcrI(3)
|
||||
! EcrrI(2) = EcrrI(2) - EcrrI(1) - EcrrI(3)
|
||||
|
||||
! De-scaling for N-centered ensemble
|
||||
|
||||
if(doNcentered) then
|
||||
! if(doNcentered) then
|
||||
|
||||
Ecrr(:) = kappa*Ecrr(:)
|
||||
EcrI(:) = kappa*EcrI(:)
|
||||
! Ecrr(:) = kappa*Ecrr(:)
|
||||
! EcrI(:) = kappa*EcrI(:)
|
||||
|
||||
endif
|
||||
! endif
|
||||
|
||||
Ec(:) = Ecrr(:) + EcrI(:) + EcrrI(:)
|
||||
! Ec(:) = Ecrr(:) + EcrI(:) + EcrrI(:)
|
||||
|
||||
end subroutine UVWN3_lda_correlation_individual_energy
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ec)
|
||||
subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,doNcentered,LZc)
|
||||
|
||||
! Compute VWN5 LDA correlation potential
|
||||
|
||||
@ -11,9 +11,7 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid,nspin)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
logical,intent(in) :: doNcentered
|
||||
double precision,intent(in) :: kappa
|
||||
|
||||
! Local variables
|
||||
|
||||
@ -23,17 +21,13 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
|
||||
double precision :: a_f,x0_f,xx0_f,b_f,c_f,x_f,q_f
|
||||
double precision :: a_a,x0_a,xx0_a,b_a,c_a,x_a,q_a
|
||||
double precision :: dfzdz,dxdrs,dxdx_p,dxdx_f,dxdx_a,decdx_p,decdx_f,decdx_a
|
||||
double precision :: dzdra,dzdrb,dfzdra,dfzdrb,drsdr,decdr_p,decdr_f,decdr_a,decdra,decdrb,decdr
|
||||
double precision :: dzdra,dzdrb,dfzdra,dfzdrb,drsdr,decdr_p,decdr_f,decdr_a,decdra,decdrb
|
||||
double precision :: ec_z,ec_p,ec_f,ec_a
|
||||
double precision :: fz,d2fz
|
||||
|
||||
double precision :: Ecrr(nsp)
|
||||
double precision :: EcrI(nsp)
|
||||
double precision :: EcrrI(nsp)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ec(nsp)
|
||||
double precision :: LZc(nspin)
|
||||
|
||||
! Parameters of the functional
|
||||
|
||||
@ -54,56 +48,14 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
|
||||
|
||||
! Initialization
|
||||
|
||||
Ec(:) = 0d0
|
||||
Ecrr(:) = 0d0
|
||||
EcrI(:) = 0d0
|
||||
EcrrI(:) = 0d0
|
||||
LZc(:) = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
ra = max(0d0,rhow(iG,1))
|
||||
rb = max(0d0,rhow(iG,2))
|
||||
|
||||
raI = max(0d0,rho(iG,1))
|
||||
rbI = max(0d0,rho(iG,2))
|
||||
|
||||
r = ra + rb
|
||||
rI = raI + rbI
|
||||
|
||||
! spin-up contribution
|
||||
|
||||
! if(r > threshold) then
|
||||
|
||||
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
! x = sqrt(rs)
|
||||
!
|
||||
! x_f = x*x + b_f*x + c_f
|
||||
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
|
||||
! q_f = sqrt(4d0*c_f - b_f*b_f)
|
||||
!
|
||||
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
|
||||
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
|
||||
!
|
||||
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
! dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
! dxdx_f = 2d0*x + b_f
|
||||
|
||||
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
|
||||
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
|
||||
|
||||
! decdr_f = drsdr*dxdrs*decdx_f
|
||||
|
||||
! Ecrr(1) = Ecrr(1) - weight(iG)*decdr_f*r*r
|
||||
|
||||
! if(rI > threshold) then
|
||||
|
||||
! EcrI(1) = EcrI(1) + weight(iG)*ec_f*rI
|
||||
! EcrrI(1) = EcrrI(1) + weight(iG)*decdr_f*r*rI
|
||||
|
||||
! end if
|
||||
!
|
||||
! end if
|
||||
|
||||
! up-down contribution
|
||||
|
||||
@ -143,12 +95,6 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
|
||||
|
||||
dfzdz = (4d0/3d0)*((1d0 + z)**(1d0/3d0) - (1d0 - z)**(1d0/3d0))/(2d0*(2d0**(1d0/3d0) - 1d0))
|
||||
|
||||
dzdra = + (1d0 - z)/r
|
||||
dfzdra = dzdra*dfzdz
|
||||
|
||||
dzdrb = - (1d0 + z)/r
|
||||
dfzdrb = dzdrb*dfzdz
|
||||
|
||||
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
@ -169,77 +115,32 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
|
||||
decdr_f = drsdr*dxdrs*decdx_f
|
||||
decdr_a = drsdr*dxdrs*decdx_a
|
||||
|
||||
decdra = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdra/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdra*z**3 &
|
||||
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdra*z**4 + 4d0*(ec_f - ec_p)*fz*dzdra*z**3
|
||||
if(ra > threshold) then
|
||||
|
||||
decdrb = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdrb/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdrb*z**3 &
|
||||
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdrb*z**4 + 4d0*(ec_f - ec_p)*fz*dzdrb*z**3
|
||||
dzdra = + (1d0 - z)/r
|
||||
dfzdra = dzdra*dfzdz
|
||||
|
||||
decdr = 0d0
|
||||
if(ra > threshold) decdr = decdr + decdra
|
||||
if(rb > threshold) decdr = decdr + decdrb
|
||||
decdra = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdra/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdra*z**3 &
|
||||
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdra*z**4 + 4d0*(ec_f - ec_p)*fz*dzdra*z**3
|
||||
|
||||
Ecrr(2) = Ecrr(2) - weight(iG)*decdr*r*r
|
||||
LZc(1) = LZc(1) - weight(iG)*decdra*ra*r
|
||||
|
||||
if(rI > threshold) then
|
||||
end if
|
||||
|
||||
EcrI(2) = EcrI(2) + weight(iG)*ec_z*rI
|
||||
EcrrI(2) = EcrrI(2) + weight(iG)*decdr*r*rI
|
||||
if(rb > threshold) then
|
||||
|
||||
dzdrb = - (1d0 + z)/r
|
||||
dfzdrb = dzdrb*dfzdz
|
||||
|
||||
decdrb = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdrb/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdrb*z**3 &
|
||||
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdrb*z**4 + 4d0*(ec_f - ec_p)*fz*dzdrb*z**3
|
||||
|
||||
LZc(2) = LZc(2) - weight(iG)*decdrb*rb*r
|
||||
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
! spin-down contribution
|
||||
|
||||
! if(r > threshold) then
|
||||
|
||||
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
! x = sqrt(rs)
|
||||
|
||||
! x_f = x*x + b_f*x + c_f
|
||||
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
|
||||
! q_f = sqrt(4d0*c_f - b_f*b_f)
|
||||
|
||||
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
|
||||
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
|
||||
|
||||
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
! dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
! dxdx_f = 2d0*x + b_f
|
||||
|
||||
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
|
||||
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
|
||||
|
||||
! decdr_f = drsdr*dxdrs*decdx_f
|
||||
|
||||
! Ecrr(3) = Ecrr(3) - weight(iG)*decdr_f*r*r
|
||||
|
||||
! if(rI > threshold) then
|
||||
|
||||
! EcrI(3) = EcrI(3) + weight(iG)*ec_f*rI
|
||||
! EcrrI(3) = EcrrI(3) + weight(iG)*decdr_f*r*rI
|
||||
|
||||
! end if
|
||||
|
||||
! end if
|
||||
|
||||
end do
|
||||
|
||||
Ecrr(2) = Ecrr(2) - Ecrr(1) - Ecrr(3)
|
||||
EcrI(2) = EcrI(2) - EcrI(1) - EcrI(3)
|
||||
EcrrI(2) = EcrrI(2) - EcrrI(1) - EcrrI(3)
|
||||
|
||||
! De-scaling for N-centered ensemble
|
||||
|
||||
if(doNcentered) then
|
||||
|
||||
Ecrr(:) = kappa*Ecrr(:)
|
||||
EcrI(:) = kappa*EcrI(:)
|
||||
|
||||
endif
|
||||
|
||||
Ec(:) = Ecrr(:) + EcrI(:) + EcrrI(:)
|
||||
|
||||
end subroutine UVWN5_lda_correlation_individual_energy
|
||||
|
@ -76,9 +76,6 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
|
||||
double precision,allocatable :: rho(:,:,:)
|
||||
double precision,allocatable :: drho(:,:,:,:)
|
||||
|
||||
double precision :: E(nEns)
|
||||
double precision :: Om(nEns)
|
||||
|
||||
integer :: ispin,iEns,iBas
|
||||
|
||||
! Output variables
|
||||
@ -382,14 +379,6 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
|
||||
|
||||
end if
|
||||
|
||||
!!!!!
|
||||
! do iEns=1,nEns
|
||||
! print*,'occnum=',occnum(1,1,iEns),occnum(2,1,iEns),occnum(1,2,iEns),occnum(2,2,iEns)
|
||||
! print*,'nel up and down and total=', electron_number(nGrid,weight,&
|
||||
! rho(:,1,iEns)),electron_number(nGrid,weight,rho(:,2,iEns)),sum(nEl(:))
|
||||
! end do
|
||||
!!!!!
|
||||
|
||||
! Compute final KS energy
|
||||
|
||||
call dipole_moment(nBas,Pw(:,:,1)+Pw(:,:,2),nNuc,ZNuc,rNuc,dipole_int,dipole)
|
||||
@ -403,8 +392,7 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
|
||||
! Compute individual energies from ensemble energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
call unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
AO,dAO,T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,E,Om,occnum, &
|
||||
Cx_choice,doNcentered)
|
||||
call unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
AO,dAO,T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,occnum,Cx_choice,doNcentered)
|
||||
|
||||
end subroutine eDFT_UKS
|
||||
|
@ -34,7 +34,7 @@ subroutine print_unrestricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' ENSEMBLE ENERGIES'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A44,F16.10,A3)') ' Ensemble energy: ',Ew + ENuc,' au'
|
||||
write(*,'(A44,F16.10,A3)') ' Ensemble energy: ',Ew + ENuc,' au'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
@ -55,66 +55,66 @@ subroutine print_unrestricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,
|
||||
! Kinetic energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' INDIVIDUAL KINETIC ENERGIES'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
do iEns=1,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Kinetic energy state ',iEns,': ',sum(ET(:,iEns)),' au'
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,'(A60)') ' INDIVIDUAL KINETIC ENERGIES'
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! do iEns=1,nEns
|
||||
! write(*,'(A40,I2,A2,F16.10,A3)') ' Kinetic energy state ',iEns,': ',sum(ET(:,iEns)),' au'
|
||||
! end do
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,*)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Potential energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' INDIVIDUAL POTENTIAL ENERGIES'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
do iEns=1,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Potential energy state ',iEns,': ',sum(EV(:,iEns)),' au'
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,'(A60)') ' INDIVIDUAL POTENTIAL ENERGIES'
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! do iEns=1,nEns
|
||||
! write(*,'(A40,I2,A2,F16.10,A3)') ' Potential energy state ',iEns,': ',sum(EV(:,iEns)),' au'
|
||||
! end do
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,*)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Hartree energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' INDIVIDUAL HARTREE ENERGIES'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
do iEns=1,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Hartree energy state ',iEns,': ',sum(EJ(:,iEns)),' au'
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,'(A60)') ' INDIVIDUAL HARTREE ENERGIES'
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! do iEns=1,nEns
|
||||
! write(*,'(A40,I2,A2,F16.10,A3)') ' Hartree energy state ',iEns,': ',sum(EJ(:,iEns)),' au'
|
||||
! end do
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,*)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Exchange energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' INDIVIDUAL EXCHANGE ENERGIES'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
do iEns=1,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Exchange energy state ',iEns,': ',sum(Ex(:,iEns)),' au'
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,'(A60)') ' INDIVIDUAL EXCHANGE ENERGIES'
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! do iEns=1,nEns
|
||||
! write(*,'(A40,I2,A2,F16.10,A3)') ' Exchange energy state ',iEns,': ',sum(Ex(:,iEns)),' au'
|
||||
! end do
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,*)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Correlation energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' INDIVIDUAL CORRELATION ENERGIES'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
do iEns=1,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Correlation energy state ',iEns,': ',sum(Ec(:,iEns)),' au'
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,'(A60)') ' INDIVIDUAL CORRELATION ENERGIES'
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! do iEns=1,nEns
|
||||
! write(*,'(A40,I2,A2,F16.10,A3)') ' Correlation energy state ',iEns,': ',sum(Ec(:,iEns)),' au'
|
||||
! end do
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
! write(*,*)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Auxiliary energies
|
||||
@ -179,18 +179,18 @@ subroutine print_unrestricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' ENERGY DIFFERENCES FROM INDIVIDUAL ENERGIES '
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
do iEns=1,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Individual energy state ',iEns,': ',E(iEns) + ENuc,' au'
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
! do iEns=1,nEns
|
||||
! write(*,'(A40,I2,A2,F16.10,A3)') ' Individual energy state ',iEns,': ',E(iEns) + ENuc,' au'
|
||||
! end do
|
||||
! write(*,'(A60)') '-------------------------------------------------'
|
||||
|
||||
do iEns=2,nEns
|
||||
write(*,'(A40,I2,A1,F16.10,A3)') ' Energy difference 1 -> ',iEns,':',Om(iEns), ' au'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(iEns), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(iEns), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(iEns), ' au'
|
||||
write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(iEns), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(iEns), ' au'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(iEns), ' au'
|
||||
! write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iENs),' au'
|
||||
@ -200,10 +200,10 @@ subroutine print_unrestricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,
|
||||
|
||||
write(*,'(A40,I2,A1,F16.10,A3)') ' Energy difference 1 -> ',iEns,':',Om(iEns)*HaToeV, ' eV'
|
||||
write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(iEns)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(iEns)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(iEns)*HaToeV, ' eV'
|
||||
write(*,*)
|
||||
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(iEns)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(iEns)*HaToeV, ' eV'
|
||||
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(iEns)*HaToeV, ' eV'
|
||||
! write(*,*)
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iEns)*HaToeV,' eV'
|
||||
|
@ -1,5 +1,4 @@
|
||||
subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho, &
|
||||
doNcentered,kappa,Ec)
|
||||
subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,drhow,doNcentered,LZc)
|
||||
|
||||
! Compute the correlation energy of individual states
|
||||
|
||||
@ -17,19 +16,16 @@ subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid,nspin)
|
||||
double precision,intent(in) :: drhow(ncart,nGrid,nspin)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
double precision,intent(in) :: drho(ncart,nGrid,nspin)
|
||||
logical,intent(in) :: doNcentered
|
||||
double precision,intent(in) :: kappa
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: EcLDA(nsp)
|
||||
double precision :: EcGGA(nsp)
|
||||
double precision :: LZcLDA(nspin)
|
||||
double precision :: LZcGGA(nspin)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Ec(nsp)
|
||||
double precision,intent(out) :: LZc(nspin)
|
||||
|
||||
select case (rung)
|
||||
|
||||
@ -37,14 +33,13 @@ subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns
|
||||
|
||||
case(0)
|
||||
|
||||
Ec(:) = 0d0
|
||||
LZc(:) = 0d0
|
||||
|
||||
! LDA functionals
|
||||
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,rho, &
|
||||
doNcentered,kappa,Ec)
|
||||
call unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,doNcentered,LZc)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
@ -62,7 +57,7 @@ subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ec)
|
||||
call unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,LZc)
|
||||
|
||||
end select
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
subroutine unrestricted_exchange_individual_energy(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
ERI,Pw,P,rhow,drhow,rho,drho,Cx_choice,doNcentered,kappa,Ex)
|
||||
ERI,Pw,rhow,drhow,Cx_choice,doNcentered,Ex)
|
||||
|
||||
! Compute the exchange individual energy
|
||||
|
||||
@ -20,14 +20,10 @@ subroutine unrestricted_exchange_individual_energy(rung,DFA,LDA_centered,nEns,wE
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: Pw(nBas,nBas)
|
||||
double precision,intent(in) :: P(nBas,nBas)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: drhow(ncart,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
double precision,intent(in) :: kappa
|
||||
|
||||
! Output variables
|
||||
|
||||
@ -46,25 +42,25 @@ subroutine unrestricted_exchange_individual_energy(rung,DFA,LDA_centered,nEns,wE
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,&
|
||||
rhow,rho,Cx_choice,doNcentered,kappa,Ex)
|
||||
rhow,Cx_choice,doNcentered,Ex)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ex)
|
||||
call unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ex)
|
||||
|
||||
! MGGA functionals
|
||||
|
||||
case(3)
|
||||
|
||||
call unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ex)
|
||||
call unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ex)
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,nBas,ERI,Pw,P,rhow,drhow,rho,drho,Ex)
|
||||
call unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,nBas,ERI,Pw,rhow,drhow,Ex)
|
||||
|
||||
end select
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_fock_exchange_individual_energy(nBas,Pw,P,ERI,Ex)
|
||||
subroutine unrestricted_fock_exchange_individual_energy(nBas,Pw,ERI,Ex)
|
||||
|
||||
! Compute the HF individual energy in the unrestricted formalism
|
||||
|
||||
@ -8,7 +8,6 @@ subroutine unrestricted_fock_exchange_individual_energy(nBas,Pw,P,ERI,Ex)
|
||||
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: Pw(nBas,nBas)
|
||||
double precision,intent(in) :: P(nBas,nBas)
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
|
||||
! Local variables
|
||||
@ -26,7 +25,6 @@ subroutine unrestricted_fock_exchange_individual_energy(nBas,Pw,P,ERI,Ex)
|
||||
|
||||
call unrestricted_fock_exchange_potential(nBas,Pw,ERI,Fx)
|
||||
|
||||
Ex = trace_matrix(nBas,matmul(P ,Fx)) &
|
||||
- 0.5d0*trace_matrix(nBas,matmul(Pw,Fx))
|
||||
Ex = - 0.5d0*trace_matrix(nBas,matmul(Pw,Fx))
|
||||
|
||||
end subroutine unrestricted_fock_exchange_individual_energy
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ex)
|
||||
subroutine unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ex)
|
||||
|
||||
! Compute GGA exchange energy for individual states
|
||||
|
||||
@ -14,8 +14,6 @@ subroutine unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weigh
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: drhow(ncart,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
|
||||
! Output variables
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ec)
|
||||
subroutine unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ec)
|
||||
|
||||
! Compute the hybrid correlation energy for individual states
|
||||
|
||||
@ -14,8 +14,6 @@ subroutine unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: drhow(ncart,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
|
||||
! Output variables
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,nBas,ERI,Pw,P,rhow,drhow,rho,drho,Ex)
|
||||
subroutine unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,nBas,ERI,Pw,rhow,drhow,Ex)
|
||||
|
||||
! Compute the hybrid exchange energy for individual states
|
||||
|
||||
@ -14,13 +14,10 @@ subroutine unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,we
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: drhow(ncart,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: Pw(nBas,nBas)
|
||||
double precision,intent(in) :: P(nBas,nBas)
|
||||
|
||||
! Output variables
|
||||
|
||||
@ -32,7 +29,7 @@ subroutine unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,we
|
||||
|
||||
case (1)
|
||||
|
||||
call unrestricted_fock_exchange_individual_energy(nBas,Pw,P,ERI,Ex)
|
||||
call unrestricted_fock_exchange_individual_energy(nBas,Pw,ERI,Ex)
|
||||
|
||||
case default
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,dAO, &
|
||||
T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,E,Om,occnum,&
|
||||
T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,occnum,&
|
||||
Cx_choice,doNcentered)
|
||||
|
||||
! Compute unrestricted individual energies as well as excitation energies
|
||||
@ -40,7 +40,7 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
|
||||
double precision,intent(in) :: Fx(nBas,nBas,nspin)
|
||||
double precision,intent(in) :: FxHF(nBas,nBas,nspin)
|
||||
double precision,intent(in) :: Fc(nBas,nBas,nspin)
|
||||
double precision :: Ew
|
||||
double precision,intent(in) :: Ew
|
||||
double precision,intent(in) :: occnum(nBas,nspin,nEns)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
@ -54,6 +54,10 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
|
||||
double precision :: Ex(nspin,nEns)
|
||||
double precision :: Ec(nsp,nEns)
|
||||
double precision :: Exc(nEns)
|
||||
double precision :: LZH(nspin)
|
||||
double precision :: LZx(nspin)
|
||||
double precision :: LZc(nspin)
|
||||
double precision :: LZHxc(nspin)
|
||||
double precision :: Eaux(nspin,nEns)
|
||||
|
||||
double precision :: ExDD(nspin,nEns)
|
||||
@ -70,14 +74,12 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
|
||||
double precision,allocatable :: nEl(:)
|
||||
double precision,allocatable :: kappa(:)
|
||||
|
||||
double precision :: E(nEns)
|
||||
double precision :: Om(nEns)
|
||||
|
||||
double precision,external :: electron_number
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: E(nEns)
|
||||
double precision,intent(out) :: Om(nEns)
|
||||
|
||||
! Compute scaling factor for N-centered ensembles
|
||||
|
||||
allocate(nEl(nEns),kappa(nEns))
|
||||
|
||||
@ -95,83 +97,91 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
|
||||
! Kinetic energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
do ispin=1,nspin
|
||||
do iEns=1,nEns
|
||||
ET(ispin,iEns) = trace_matrix(nBas,matmul(P(:,:,ispin,iEns),T(:,:)))
|
||||
end do
|
||||
end do
|
||||
! do ispin=1,nspin
|
||||
! do iEns=1,nEns
|
||||
! ET(ispin,iEns) = trace_matrix(nBas,matmul(P(:,:,ispin,iEns),T(:,:)))
|
||||
! end do
|
||||
! end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Potential energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
do iEns=1,nEns
|
||||
do ispin=1,nspin
|
||||
EV(ispin,iEns) = trace_matrix(nBas,matmul(P(:,:,ispin,iEns),V(:,:)))
|
||||
end do
|
||||
end do
|
||||
! do iEns=1,nEns
|
||||
! do ispin=1,nspin
|
||||
! EV(ispin,iEns) = trace_matrix(nBas,matmul(P(:,:,ispin,iEns),V(:,:)))
|
||||
! end do
|
||||
! end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Individual Hartree energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
do iEns=1,nEns
|
||||
! do iEns=1,nEns
|
||||
|
||||
do ispin=1,nspin
|
||||
call hartree_coulomb(nBas,Pw(:,:,ispin),ERI,J(:,:,ispin))
|
||||
end do
|
||||
! do ispin=1,nspin
|
||||
! call hartree_coulomb(nBas,Pw(:,:,ispin),ERI,J(:,:,ispin))
|
||||
! end do
|
||||
|
||||
if(doNcentered) then
|
||||
|
||||
EJ(1,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,1))) &
|
||||
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
|
||||
|
||||
EJ(2,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,2))) &
|
||||
+ kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,1))) &
|
||||
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
|
||||
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
|
||||
|
||||
EJ(3,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,2))) &
|
||||
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
|
||||
else
|
||||
! if(doNcentered) then
|
||||
!
|
||||
! EJ(1,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,1))) &
|
||||
! - 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
|
||||
!
|
||||
! EJ(2,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,2))) &
|
||||
! + kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,1))) &
|
||||
! - 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
|
||||
! - 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
|
||||
!
|
||||
! EJ(3,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,2))) &
|
||||
! - 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
|
||||
! else
|
||||
|
||||
|
||||
EJ(1,iEns) = trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,1))) &
|
||||
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
|
||||
! EJ(1,iEns) = trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,1))) &
|
||||
! - 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
|
||||
|
||||
EJ(2,iEns) = trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,2))) &
|
||||
+ trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,1))) &
|
||||
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
|
||||
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
|
||||
! EJ(2,iEns) = trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,2))) &
|
||||
! + trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,1))) &
|
||||
! - 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
|
||||
! - 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
|
||||
|
||||
EJ(3,iEns) = trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,2))) &
|
||||
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
|
||||
end if
|
||||
! EJ(3,iEns) = trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,2))) &
|
||||
! - 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
|
||||
! end if
|
||||
|
||||
! end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Individual Hartree energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
do ispin=1,nspin
|
||||
LZH(ispin) = -0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1)+Pw(:,:,2),J(:,:,ispin)))
|
||||
end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Individual exchange energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
do iEns=1,nEns
|
||||
do ispin=1,nspin
|
||||
call unrestricted_exchange_individual_energy(x_rung,x_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,ERI, &
|
||||
Pw(:,:,ispin),P(:,:,ispin,iEns),rhow(:,ispin),drhow(:,:,ispin), &
|
||||
rho(:,ispin,iEns),drho(:,:,ispin,iEns),Cx_choice,doNcentered,kappa(iEns), &
|
||||
Ex(ispin,iEns))
|
||||
|
||||
end do
|
||||
do ispin=1,nspin
|
||||
call unrestricted_exchange_individual_energy(x_rung,x_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,ERI, &
|
||||
Pw(:,:,ispin),rhow(:,ispin),drhow(:,:,ispin),Cx_choice,doNcentered, &
|
||||
LZx(ispin))
|
||||
end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Individual correlation energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
do iEns=1,nEns
|
||||
call unrestricted_correlation_individual_energy(c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight, &
|
||||
rhow,drhow,rho(:,:,iEns),drho(:,:,:,iEns),doNcentered,kappa(iEns),Ec(:,iEns))
|
||||
end do
|
||||
call unrestricted_correlation_individual_energy(c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,drhow,doNcentered,LZc)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Individual exchange-correlation energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
print*,LZc
|
||||
LZHxc(:) = LZH(:) + LZx(:) + LZc(:)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute auxiliary energies
|
||||
@ -199,10 +209,14 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
|
||||
! Total energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! do iEns=1,nEns
|
||||
! Exc(iEns) = sum(Ex(:,iEns)) + sum(Ec(:,iEns))
|
||||
! E(iEns) = sum(ET(:,iEns)) + sum(EV(:,iEns)) + sum(EJ(:,iEns)) &
|
||||
! + sum(Ex(:,iEns)) + sum(Ec(:,iEns)) + sum(ExcDD(:,iEns))
|
||||
! end do
|
||||
|
||||
do iEns=1,nEns
|
||||
Exc(iEns) = sum(Ex(:,iEns)) + sum(Ec(:,iEns))
|
||||
E(iEns) = sum(ET(:,iEns)) + sum(EV(:,iEns)) + sum(EJ(:,iEns)) &
|
||||
+ sum(Ex(:,iEns)) + sum(Ec(:,iEns)) + sum(ExcDD(:,iEns))
|
||||
E(iEns) = sum(Eaux(:,iEns)) + sum(LZHxc(:)) + sum(ExcDD(:,iEns))
|
||||
end do
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
@ -212,9 +226,9 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
|
||||
do iEns=1,nEns
|
||||
Om(iEns) = E(iEns) - E(1)
|
||||
|
||||
Omx(iEns) = sum(Ex(:,iEns)) - sum(Ex(:,1))
|
||||
Omc(iEns) = sum(Ec(:,iEns)) - sum(Ec(:,1))
|
||||
Omxc(iEns) = Exc(iEns) - Exc(1)
|
||||
! Omx(iEns) = sum(Ex(:,iEns)) - sum(Ex(:,1))
|
||||
! Omc(iEns) = sum(Ec(:,iEns)) - sum(Ec(:,1))
|
||||
! Omxc(iEns) = Exc(iEns) - Exc(1)
|
||||
|
||||
Omaux(iEns) = sum(Eaux(:,iEns)) - sum(Eaux(:,1))
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
subroutine unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,rho, &
|
||||
doNcentered,kappa,Ec)
|
||||
subroutine unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,doNcentered,LZc)
|
||||
|
||||
! Compute LDA correlation energy for individual states
|
||||
|
||||
@ -15,13 +14,11 @@ subroutine unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid,nspin)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
logical,intent(in) :: doNcentered
|
||||
double precision,intent(in) :: kappa
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ec(nsp)
|
||||
double precision :: LZc(nspin)
|
||||
|
||||
! Select correlation functional
|
||||
|
||||
@ -37,11 +34,11 @@ subroutine unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,
|
||||
|
||||
case (3)
|
||||
|
||||
call UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ec)
|
||||
call UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,doNcentered,LZc)
|
||||
|
||||
case (4)
|
||||
|
||||
call UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ec)
|
||||
call UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,doNcentered,LZc)
|
||||
|
||||
case default
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
subroutine unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,rhow,rho,&
|
||||
Cx_choice,doNcentered,kappa,Ex)
|
||||
subroutine unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,rhow,&
|
||||
Cx_choice,doNcentered,Ex)
|
||||
|
||||
! Compute LDA exchange energy for individual states
|
||||
|
||||
@ -17,10 +17,8 @@ subroutine unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEn
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
logical,intent(in) :: doNcentered
|
||||
double precision,intent(in) :: kappa
|
||||
|
||||
|
||||
! Output variables
|
||||
@ -33,12 +31,12 @@ subroutine unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEn
|
||||
|
||||
case (1)
|
||||
|
||||
call US51_lda_exchange_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ex)
|
||||
call US51_lda_exchange_individual_energy(nGrid,weight,rhow,Ex)
|
||||
|
||||
case (2)
|
||||
|
||||
call UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow,rho,&
|
||||
Cx_choice,doNcentered,kappa,Ex)
|
||||
call UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow, &
|
||||
Cx_choice,doNcentered,Ex)
|
||||
|
||||
case default
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ex)
|
||||
subroutine unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ex)
|
||||
|
||||
! Compute MGGA exchange energy for individual states
|
||||
|
||||
@ -14,8 +14,6 @@ subroutine unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weig
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rhow(nGrid)
|
||||
double precision,intent(in) :: drhow(ncart,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
|
||||
! Output variables
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user