4
1
mirror of https://github.com/pfloos/quack synced 2025-01-03 18:16:18 +01:00

fix iteractive dynamical BSE

This commit is contained in:
Pierre-Francois Loos 2020-06-14 13:18:56 +02:00
parent f7e90a9f99
commit b823bbcac7
2 changed files with 30 additions and 15 deletions

View File

@ -67,7 +67,7 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,dTDA,eta,nBas,nC,nO,nV,nR,nS,
gapGW = eGW(nO+1) - eGW(nO)
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,*) ' First-order dynamical correction to static Bethe-Salpeter excitation energies '
write(*,*) ' First-order dynamical correction to static Bethe-Salpeter excitation energies '
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,'(A57,F10.6,A3)') ' BSE neutral excitation must be lower than the GW gap = ',gapGW*HaToeV,' eV'
write(*,*) '---------------------------------------------------------------------------------------------------'

View File

@ -1,4 +1,4 @@
subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,OmRPA,OmBSE,XpY,XmY,rho)
subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,dTDA,eta,nBas,nC,nO,nV,nR,nS,eGW,OmRPA,OmBSE,XpY,XmY,rho)
! Compute self-consistently the dynamical effects via perturbation theory for BSE
@ -8,6 +8,7 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
! Input variables
logical,intent(in) :: TDA
logical,intent(in) :: dTDA
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
@ -25,8 +26,8 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
! Local variables
logical :: dTDA = .true.
integer :: ia
integer,parameter :: maxS = 10
double precision :: gapGW
@ -40,14 +41,27 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
double precision,allocatable :: OmOld(:)
double precision,allocatable :: X(:)
double precision,allocatable :: Y(:)
double precision,allocatable :: A_dyn(:,:)
double precision,allocatable :: B_dyn(:,:)
double precision,allocatable :: Ap_dyn(:,:)
double precision,allocatable :: Am_dyn(:,:)
double precision,allocatable :: Bp_dyn(:,:)
double precision,allocatable :: Bm_dyn(:,:)
! Memory allocation
allocate(OmDyn(nS),OmOld(nS),X(nS),Y(nS),A_dyn(nS,nS))
allocate(OmDyn(nS),OmOld(nS),X(nS),Y(nS),Ap_dyn(nS,nS))
if(.not.dTDA) allocate(B_dyn(nS,nS))
if(.not.dTDA) allocate(Am_dyn(nS,nS),Bp_dyn(nS,nS),Bm_dyn(nS,nS))
! Print main components of transition vectors
call print_transition_vectors(nBas,nC,nO,nV,nR,nS,OmBSE,XpY,XmY)
if(dTDA) then
write(*,*)
write(*,*) '*** dynamical TDA activated ***'
write(*,*)
end if
gapGW = eGW(nO+1) - eGW(nO)
@ -56,8 +70,9 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
OmOld(:) = OmBSE(:)
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,*) ' First-order dynamical correction to static Bethe-Salpeter excitation energies '
write(*,*) ' First-order dynamical correction to static Bethe-Salpeter excitation energies '
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,'(A57,F10.6,A3)') ' BSE neutral excitation must be lower than the GW gap = ',gapGW*HaToeV,' eV'
write(*,*)
do while(Conv > thresh .and. nSCF < maxSCF)
@ -83,21 +98,21 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
! Resonant part of the BSE correction
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:), &
A_dyn(:,:))
Ap_dyn(:,:))
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:)))
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:)))
else
! Anti-resonant part of the BSE correction
call Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:), &
A_dyn(:,:),B_dyn(:,:))
Ap_dyn(:,:),Am_dyn(:,:),Bp_dyn(:,:),Bm_dyn(:,:))
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:))) &
- dot_product(Y(:),matmul(A_dyn(:,:),Y(:))) &
+ dot_product(X(:),matmul(B_dyn(:,:),Y(:))) &
- dot_product(Y(:),matmul(B_dyn(:,:),X(:)))
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:))) &
- dot_product(Y(:),matmul(Am_dyn(:,:),Y(:))) &
+ dot_product(X(:),matmul(Bp_dyn(:,:),Y(:))) &
- dot_product(Y(:),matmul(Bm_dyn(:,:),X(:)))
end if