4
1
mirror of https://github.com/pfloos/quack synced 2024-12-22 04:14:26 +01:00
This commit is contained in:
Pierre-Francois Loos 2024-09-08 17:15:27 +02:00
parent d5a396200e
commit b6652240d3
7 changed files with 753 additions and 2 deletions

255
src/GT/GG0T0pp.f90 Normal file
View File

@ -0,0 +1,255 @@
subroutine GG0T0pp(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,TDA_T,TDA,dBSE,dTDA,doppBSE, &
linearize,eta,regularize,nOrb,nC,nO,nV,nR,nS,ENuc,EGHF,ERI,dipole_int,eHF)
! Perform one-shot calculation with a T-matrix self-energy (G0T0)
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dotest
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: dophBSE
logical,intent(in) :: doppBSE
logical,intent(in) :: TDA_T
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: linearize
double precision,intent(in) :: eta
logical,intent(in) :: regularize
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: EGHF
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: dipole_int(nOrb,nOrb,ncart)
! Local variables
logical :: print_T = .false.
integer :: nOO
integer :: nVV
double precision :: EcRPA
double precision :: EcBSE
double precision :: EcGM
double precision,allocatable :: Bpp(:,:)
double precision,allocatable :: Cpp(:,:)
double precision,allocatable :: Dpp(:,:)
double precision,allocatable :: Om1(:)
double precision,allocatable :: X1(:,:)
double precision,allocatable :: Y1(:,:)
double precision,allocatable :: rho1(:,:,:)
double precision,allocatable :: Om2(:)
double precision,allocatable :: X2(:,:)
double precision,allocatable :: Y2(:,:)
double precision,allocatable :: rho2(:,:,:)
double precision,allocatable :: Sig(:)
double precision,allocatable :: Z(:)
double precision,allocatable :: eGT(:)
double precision,allocatable :: eGTlin(:)
double precision, allocatable :: Om(:), R(:,:)
! Output variables
! Hello world
write(*,*)
write(*,*)'**********************************'
write(*,*)'* Generalized G0T0pp Calculation *'
write(*,*)'**********************************'
write(*,*)
! TDA for T
if(TDA_T) then
write(*,*) 'Tamm-Dancoff approximation activated for pp T-matrix!'
write(*,*)
end if
! TDA
if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*)
end if
! Dimensions of the pp-RPA linear reponse matrices
nOO = nO*(nO - 1)/2
nVV = nV*(nV - 1)/2
! Memory allocation
allocate(Om1(nVV),X1(nVV,nVV),Y1(nOO,nVV),Om2(nOO),X2(nVV,nOO),Y2(nOO,nOO), &
rho1(nOrb,nOrb,nVV),rho2(nOrb,nOrb,nOO),Sig(nOrb),Z(nOrb),eGT(nOrb),eGTlin(nOrb))
!----------------------------------------------
! Compute T-matrix
!----------------------------------------------
! Compute linear response
allocate(Bpp(nVV,nOO),Cpp(nVV,nVV),Dpp(nOO,nOO))
call ppGLR_C(nOrb,nC,nO,nV,nR,nVV,1d0,eHF,ERI,Cpp)
call ppGLR_D(nOrb,nC,nO,nV,nR,nOO,1d0,eHF,ERI,Dpp)
if(.not.TDA_T) call ppGLR_B(nOrb,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
call ppGLR(TDA_T,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
deallocate(Bpp,Cpp,Dpp)
if(print_T) call print_excitation_energies('ppRPA@GHF','2p',nVV,Om1)
if(print_T) call print_excitation_energies('ppRPA@FHF','2h',nOO,Om2)
!----------------------------------------------
! Compute excitation densities
!----------------------------------------------
call GGTpp_excitation_density(nOrb,nC,nO,nV,nR,nOO,nVV,ERI,X1,Y1,rho1,X2,Y2,rho2)
!----------------------------------------------
! Compute T-matrix version of the self-energy
!----------------------------------------------
if(regularize) call GTpp_regularization(nOrb,nC,nO,nV,nR,nOO,nVV,eHF,Om1,rho1,Om2,rho2)
call GGTpp_self_energy_diag(eta,nOrb,nC,nO,nV,nR,nOO,nVV,eHF,Om1,rho1,Om2,rho2,EcGM,Sig,Z)
!----------------------------------------------
! Solve the quasi-particle equation
!----------------------------------------------
eGTlin(:) = eHF(:) + Z(:)*Sig(:)
if(linearize) then
write(*,*) ' *** Quasiparticle energies obtained by linearization *** '
write(*,*)
eGT(:) = eGTlin(:)
else
write(*,*) ' *** Quasiparticle energies obtained by root search *** '
write(*,*)
call GGTpp_QP_graph(eta,nOrb,nC,nO,nV,nR,nOO,nVV,eHF,Om1,rho1,Om2,rho2,eGTlin,eHF,eGT,Z)
end if
! call GGTpp_plot_self_energy(nOrb,nC,nO,nV,nR,nOO,nVV,eHF,eGT,Om1,rho1,Om2,rho2)
!----------------------------------------------
! Dump results
!----------------------------------------------
! Compute the ppRPA correlation energy
allocate(Bpp(nVV,nOO),Cpp(nVV,nVV),Dpp(nOO,nOO))
call ppGLR_C(nOrb,nC,nO,nV,nR,nVV,1d0,eGT,ERI,Cpp)
call ppGLR_D(nOrb,nC,nO,nV,nR,nOO,1d0,eGT,ERI,Dpp)
if(.not.TDA_T) call ppGLR_B(nOrb,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
call ppGLR(TDA_T,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
deallocate(Bpp,Cpp,Dpp)
call print_GG0T0pp(nOrb,nO,eHF,ENuc,EGHF,Sig,Z,eGT,EcGM,EcRPA)
! Perform BSE calculation
! if(dophBSE) then
! call GGTpp_phBSE(TDA_T,TDA,dBSE,dTDA,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV, &
! Om1,X1,Y1,Om2,X2,Y2,rho1,rho2,ERI,dipole_int,eHF,eGT,EcBSE)
! if(exchange_kernel) then
! EcBSE = 0.5d0*EcBSE
! end if
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@phBSE@G0T0pp@GHF correlation energy = ',EcBSE,' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@phBSE@G0T0pp@GHF total energy = ',ENuc + EGHF + EcBSE,' au'
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
! if(doACFDT) then
! write(*,*) '--------------------------------------------------------'
! write(*,*) 'Adiabatic connection version of phBSE correlation energy'
! write(*,*) '--------------------------------------------------------'
! write(*,*)
! if(doXBS) then
! write(*,*) '*** scaled screening version (XBS) ***'
! write(*,*)
! end if
! call RGTpp_phACFDT(exchange_kernel,doXBS,.false.,TDA_T,TDA,dophBSE,eta,nOrb,nC,nO,nV,nR,nS, &
! nOO,nVV,Om1,X1,Y1,Om2,X2,Y2,rho1,rho2,ERI,eHF,eGT,EcBSE)
! if(exchange_kernel) then
! EcBSE = 0.5d0*EcBSE
! end if
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'AC@phBSE@G0T0pp@GHF correlation energy = ',EcBSE,' au'
! write(*,'(2X,A50,F20.10,A3)') 'AC@phBSE@G0T0pp@GHF total energy = ',ENuc + EGHF + EcBSE,' au'
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
! end if
! if(doppBSE) then
! call GGTpp_ppBSE(TDA_T,TDA,dBSE,dTDA,eta,nOrb,nC,nO,nV,nR,nOO,nVV, &
! Om1,X1,Y1,Om2,X2,Y2,rho1,rho2,ERI,dipole_int,eHF,eGT,EcBSE)
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0T0pp@GHF correlation energy = ',EcBSE,' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0T0pp@GHF total energy = ',ENuc + EGHF + EcBSE,' au'
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
! Testing zone
if(dotest) then
call dump_test_value('G','G0T0pp correlation energy',EcRPA)
call dump_test_value('G','G0T0pp HOMO energy',eGT(nO))
call dump_test_value('G','G0T0pp LUMO energy',eGT(nO+1))
end if
end subroutine

87
src/GT/GGTpp_QP_graph.f90 Normal file
View File

@ -0,0 +1,87 @@
subroutine GGTpp_QP_graph(eta,nBas,nC,nO,nV,nR,nOO,nVV,eHF,Om1,rho1,Om2,rho2,eGTlin,eOld,eGT,Z)
! Compute the graphical solution of the QP equation
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: Om1(nVV)
double precision,intent(in) :: rho1(nBas,nBas,nVV)
double precision,intent(in) :: Om2(nOO)
double precision,intent(in) :: rho2(nBas,nBas,nOO)
double precision,intent(in) :: eGTlin(nBas)
double precision,intent(in) :: eOld(nBas)
! Local variables
integer :: p
integer :: nIt
integer,parameter :: maxIt = 64
double precision,parameter :: thresh = 1d-6
double precision,external :: GGTpp_SigC,GGTpp_dSigC
double precision :: SigC,dSigC
double precision :: f,df
double precision :: w
! Output variables
double precision,intent(out) :: eGT(nBas)
double precision,intent(out) :: Z(nBas)
! Run Newton's algorithm to find the root
write(*,*)'-----------------------------------------------------'
write(*,'(A5,1X,A3,1X,A15,1X,A15,1X,A10)') 'Orb.','It.','e_GTpplin (eV)','e_GTpplin (eV)','Z'
write(*,*)'-----------------------------------------------------'
do p=nC+1,nBas-nR
w = eGTlin(p)
nIt = 0
f = 1d0
do while (abs(f) > thresh .and. nIt < maxIt)
nIt = nIt + 1
SigC = GGTpp_SigC(p,w,eta,nBas,nC,nO,nV,nR,nOO,nVV,eOld,Om1,rho1,Om2,rho2)
dSigC = GGTpp_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nOO,nVV,eOld,Om1,rho1,Om2,rho2)
f = w - eHF(p) - SigC
df = 1d0/(1d0 - dSigC)
w = w - df*f
end do
if(nIt == maxIt) then
eGT(p) = eGTlin(p)
write(*,'(I5,1X,I3,1X,F15.9,1X,F15.9,1X,F10.6,1X,A12)') p,nIt,eGTlin(p)*HaToeV,eGT(p)*HaToeV,Z(p),'Cvg Failed!'
else
eGT(p) = w
Z(p) = df
write(*,'(I5,1X,I3,1X,F15.9,1X,F15.9,1X,F10.6)') p,nIt,eGTlin(p)*HaToeV,eGT(p)*HaToeV,Z(p)
end if
end do
write(*,*)'-----------------------------------------------------'
write(*,*)
end subroutine

62
src/GT/GGTpp_SigC.f90 Normal file
View File

@ -0,0 +1,62 @@
double precision function GGTpp_SigC(p,w,eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Om1,rho1,Om2,rho2)
! Compute diagonal of the correlation part of the self-energy
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: p
double precision,intent(in) :: w
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om1(nVV)
double precision,intent(in) :: rho1(nBas,nBas,nVV)
double precision,intent(in) :: Om2(nOO)
double precision,intent(in) :: rho2(nBas,nBas,nOO)
! Local variables
integer :: i,a,cd,kl
double precision :: eps
! Initialize
GGTpp_SigC = 0d0
!-------------------------------------------!
! Occupied part of the T-matrix self-energy !
!-------------------------------------------!
do i=nC+1,nO
do cd=1,nVV
eps = w + e(i) - Om1(cd)
GGTpp_SigC = GGTpp_SigC + rho1(p,i,cd)**2*eps/(eps**2 + eta**2)
end do
end do
!------------------------------------------!
! Virtual part of the T-matrix self-energy !
!------------------------------------------!
do a=nO+1,nBas-nR
do kl=1,nOO
eps = w + e(a) - Om2(kl)
GGTpp_SigC = GGTpp_SigC + rho2(p,a,kl)**2*eps/(eps**2 + eta**2)
end do
end do
end function

62
src/GT/GGTpp_dSigC.f90 Normal file
View File

@ -0,0 +1,62 @@
double precision function GGTpp_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Om1,rho1,Om2,rho2)
! Compute diagonal of the correlation part of the self-energy
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: p
double precision,intent(in) :: w
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om1(nVV)
double precision,intent(in) :: rho1(nBas,nBas,nVV)
double precision,intent(in) :: Om2(nOO)
double precision,intent(in) :: rho2(nBas,nBas,nOO)
! Local variables
integer :: i,a,cd,kl
double precision :: eps
! Initialize
GGTpp_dSigC = 0d0
!-------------------------------------------!
! Occupied part of the T-matrix self-energy !
!-------------------------------------------!
do i=nC+1,nO
do cd=1,nVV
eps = w + e(i) - Om1(cd)
GGTpp_dSigC = GGTpp_dSigC - rho1(p,i,cd)**2*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
!------------------------------------------!
! Virtual part of the T-matrix self-energy !
!------------------------------------------!
do a=nO+1,nBas-nR
do kl=1,nOO
eps = w + e(a) - Om2(kl)
GGTpp_dSigC = GGTpp_dSigC - rho2(p,a,kl)**2*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
end function

View File

@ -0,0 +1,180 @@
subroutine GGTpp_excitation_density(ispin,nBas,nC,nO,nV,nR,nOO,nVV,ERI,X1,Y1,rho1,X2,Y2,rho2)
! Compute excitation densities for T-matrix self-energy
! TODO
! debug DGEMM for nC != 0
! and nR != 0
implicit none
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: X1(nVV,nVV)
double precision,intent(in) :: Y1(nOO,nVV)
double precision,intent(in) :: X2(nVV,nOO)
double precision,intent(in) :: Y2(nOO,nOO)
! Local variables
integer :: i,j,k,l
integer :: a,b,c,d
integer :: p,q
integer :: ab,cd,ij,kl
double precision,external :: Kronecker_delta
! Output variables
double precision,intent(out) :: rho1(nBas,nBas,nVV)
double precision,intent(out) :: rho2(nBas,nBas,nOO)
integer :: dim_1, dim_2
double precision, allocatable :: ERI_1(:,:,:)
double precision, allocatable :: ERI_2(:,:,:)
! Initialization
rho1(:,:,:) = 0d0
rho2(:,:,:) = 0d0
dim_1 = (nBas - nO) * (nBas - nO - 1) / 2
dim_2 = nO * (nO - 1) / 2
if((dim_1 .eq. 0) .or. (dim_2 .eq. 0)) then
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(p, q, a, b, ab, c, d, cd, i, j, ij, k, l, kl) &
!$OMP SHARED(nC, nBas, nR, nO, rho1, rho2, ERI, X1, Y1, X2, Y2)
!$OMP DO COLLAPSE(2)
do q = nC+1, nBas-nR
do p = nC+1, nBas-nR
ab = 0
do a = nO+1, nBas-nR
do b = a+1, nBas-nR
ab = ab + 1
cd = 0
do c = nO+1, nBas-nR
do d = c+1, nBas-nR
cd = cd + 1
rho1(p,q,ab) = rho1(p,q,ab) &
+ (ERI(p,q,c,d) - ERI(p,q,d,c))*X1(cd,ab)
end do ! d
end do ! c
kl = 0
do k = nC+1, nO
do l = k+1, nO
kl = kl + 1
rho1(p,q,ab) = rho1(p,q,ab) &
+ (ERI(p,q,k,l) - ERI(p,q,l,k))*Y1(kl,ab)
end do ! l
end do ! k
end do ! b
end do ! a
ij = 0
do i = nC+1, nO
do j = i+1, nO
ij = ij + 1
cd = 0
do c = nO+1, nBas-nR
do d = c+1, nBas-nR
cd = cd + 1
rho2(p,q,ij) = rho2(p,q,ij) &
+ (ERI(p,q,c,d) - ERI(p,q,d,c))*X2(cd,ij)
end do ! d
end do ! c
kl = 0
do k = nC+1, nO
do l = k+1, nO
kl = kl + 1
rho2(p,q,ij) = rho2(p,q,ij) &
+ (ERI(p,q,k,l) - ERI(p,q,l,k))*Y2(kl,ij)
end do ! l
end do ! k
end do ! j
end do ! i
end do ! p
end do ! q
!$OMP END DO
!$OMP END PARALLEL
else
allocate(ERI_1(nBas,nBas,dim_1), ERI_2(nBas,nBas,dim_2))
ERI_1 = 0.d0
ERI_2 = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(p, q, c, d, cd, k, l, kl) &
!$OMP SHARED(nC, nBas, nR, nO, ERI_1, ERI_2, ERI)
!$OMP DO COLLAPSE(2)
do q = nC+1, nBas-nR
do p = nC+1, nBas-nR
cd = 0
do c = nO+1, nBas-nR
do d = c+1, nBas-nR
cd = cd + 1
ERI_1(p,q,cd) = ERI(p,q,c,d) - ERI(p,q,d,c)
enddo
enddo
kl = 0
do k = nC+1, nO
do l = k+1, nO
kl = kl + 1
ERI_2(p,q,kl) = ERI(p,q,k,l) - ERI(p,q,l,k)
end do
end do
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm("N", "N", nBas*nBas, dim_1, dim_1, 1.d0, &
ERI_1(1,1,1), nBas*nBas, X1(1,1), dim_1, &
0.d0, rho1(1,1,1), nBas*nBas)
call dgemm("N", "N", nBas*nBas, dim_1, dim_2, 1.d0, &
ERI_2(1,1,1), nBas*nBas, Y1(1,1), dim_2, &
1.d0, rho1(1,1,1), nBas*nBas)
call dgemm("N", "N", nBas*nBas, dim_2, dim_1, 1.d0, &
ERI_1(1,1,1), nBas*nBas, X2(1,1), dim_1, &
0.d0, rho2(1,1,1), nBas*nBas)
call dgemm("N", "N", nBas*nBas, dim_2, dim_2, 1.d0, &
ERI_2(1,1,1), nBas*nBas, Y2(1,1), dim_2, &
1.d0, rho2(1,1,1), nBas*nBas)
deallocate(ERI_1, ERI_2)
endif
end subroutine

View File

@ -0,0 +1,105 @@
subroutine GGTpp_self_energy_diag(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Om1,rho1,Om2,rho2,EcGM,Sig,Z)
! Compute diagonal of the correlation part of the T-matrix self-energy
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om1(nVV)
double precision,intent(in) :: rho1(nBas,nBas,nVV)
double precision,intent(in) :: Om2(nOO)
double precision,intent(in) :: rho2(nBas,nBas,nOO)
! Local variables
integer :: i,j,a,b,p,cd,kl
double precision :: num,eps
! Output variables
double precision,intent(inout) :: EcGM
double precision,intent(inout) :: Sig(nBas)
double precision,intent(inout) :: Z(nBas)
! Initialization
Sig(:) = 0d0
Z(:) = 0d0
EcGM = 0d0
!--------------------------------------!
! Occupied part of the Tpp self-energy !
!--------------------------------------!
do p=nC+1,nBas-nR
do i=nC+1,nO
do cd=1,nVV
eps = e(p) + e(i) - Om1(cd)
num = rho1(p,i,cd)**2
Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2)
Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
end do
!------------------------------------------!
! Virtual part of the T-matrix self-energy !
!------------------------------------------!
do p=nC+1,nBas-nR
do a=nO+1,nBas-nR
do kl=1,nOO
eps = e(p) + e(a) - Om2(kl)
num = rho2(p,a,kl)**2
Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2)
Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
end do
!-------------------------------------!
! Galitskii-Migdal correlation energy !
!-------------------------------------!
do i=nC+1,nO
do j=nC+1,nO
do cd=1,nVV
eps = e(i) + e(j) - Om1(cd)
num = rho1(i,j,cd)**2
EcGM = EcGM + num*eps/(eps**2 + eta**2)
end do
end do
end do
do a=nO+1,nBas-nR
do b=nO+1,nBas-nR
do kl=1,nOO
eps = e(a) + e(b) - Om2(kl)
num = rho2(a,b,kl)**2
EcGM = EcGM - num*eps/(eps**2 + eta**2)
end do
end do
end do
Z(:) = 1d0/(1d0 - Z(:))
end subroutine

View File

@ -207,8 +207,8 @@ subroutine GG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@GG0W0 correlation energy =',EcBSE,' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@GG0W0 total energy =',ENuc + EGHF + EcBSE,' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0W0@GHF correlation energy = ',EcBSE,' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0W0@GHF total energy = ',ENuc + EGHF + EcBSE,' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)