4
1
mirror of https://github.com/pfloos/quack synced 2025-01-08 20:33:30 +01:00

remove useless routines in utils

This commit is contained in:
Pierre-Francois Loos 2023-07-20 22:17:47 +02:00
parent e6d68ea534
commit b53a1505be
7 changed files with 0 additions and 426 deletions

View File

@ -1,33 +0,0 @@
subroutine chem_to_phys_ERI(nBas,ERI)
! Antisymmetrize ERIs
implicit none
! Input variables
integer,intent(in) :: nBas
double precision,intent(inout):: ERI(nBas,nBas,nBas,nBas)
! Local variables
integer :: p,q,r,s
double precision,allocatable :: pERI(:,:,:,:)
allocate(pERI(nBas,nBas,nBas,nBas))
do p=1,nBas
do q=1,nBas
do r=1,nBas
do s=1,nBas
pERI(p,q,r,s) = ERI(p,r,q,s)
enddo
enddo
enddo
enddo
ERI(:,:,:,:) = pERI(:,:,:,:)
end subroutine

View File

@ -1,66 +0,0 @@
double precision function dfac(n)
implicit none
integer :: n
double precision, external :: fact
dfac = fact(n)
end
!-------------------
! The following functions were taken with from Quantum Package
! (https://github.com/QuantumPackage/qp2 , AGPL license)
double precision function fact(n)
implicit none
integer :: n
double precision, save :: memo(1:100)
integer, save :: memomax = 1
integer :: i
double precision :: logfact
if (n<=memomax) then
if (n<2) then
fact = 1.d0
else
fact = memo(n)
endif
return
endif
memo(1) = 1.d0
do i=memomax+1,min(n,100)
memo(i) = memo(i-1)*dble(i)
enddo
memomax = min(n,100)
fact = dexp(logfact(n))
end function
double precision function logfact(n)
implicit none
integer :: n
double precision, save :: memo(1:100)
integer, save :: memomax = 1
integer :: i
if (n<=memomax) then
if (n<2) then
logfact = 0.d0
else
logfact = memo(n)
endif
return
endif
memo(1) = 0.d0
do i=memomax+1,min(n,100)
memo(i) = memo(i-1)+dlog(dble(i))
enddo
memomax = min(n,100)
logfact = memo(memomax)
do i=101,n
logfact = logfact + dlog(dble(i))
enddo
end function

View File

@ -1,29 +0,0 @@
function norm_coeff(alpha,a)
implicit none
! Input variables
double precision,intent(in) :: alpha
integer,intent(in) :: a(3)
! local variable
double precision :: pi,dfa(3),dfac
integer :: atot
! Output variable
double precision norm_coeff
pi = 4d0*atan(1d0)
atot = a(1) + a(2) + a(3)
dfa(1) = dfac(2*a(1))/(2d0**a(1)*dfac(a(1)))
dfa(2) = dfac(2*a(2))/(2d0**a(2)*dfac(a(2)))
dfa(3) = dfac(2*a(3))/(2d0**a(3)*dfac(a(3)))
norm_coeff = (2d0*alpha/pi)**(3d0/2d0)*(4d0*alpha)**atot
norm_coeff = norm_coeff/(dfa(1)*dfa(2)*dfa(3))
norm_coeff = sqrt(norm_coeff)
end function norm_coeff

View File

@ -1,40 +0,0 @@
subroutine overlap(nBas,bra,ket)
! Compute the overlap between two sets of coefficients
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
double precision,intent(in) :: bra(nBas,nBas),ket(nBas,nBas)
! Local variables
double precision,allocatable :: s(:),Ov(:,:)
! Allocate
allocate(s(nBas),Ov(nBas,nBas))
! Compute overlap
Ov = matmul(transpose(bra),ket)
call diagonalize_matrix(nBas,Ov,s)
! Print results
write(*,'(A50)') '---------------------------------------'
write(*,'(A50)') ' Overlap '
write(*,'(A50)') '---------------------------------------'
call matout(nBas,nBas,Ov)
write(*,*)
write(*,'(A50)') '---------------------------------------'
write(*,'(A50)') ' Eigenvalues of overlap matrix'
write(*,'(A50)') '---------------------------------------'
call matout(nBas,1,s)
write(*,*)
end subroutine overlap

View File

@ -1,33 +0,0 @@
subroutine phys_to_chem_ERI(nBas,ERI)
! Antisymmetrize ERIs
implicit none
! Input variables
integer,intent(in) :: nBas
double precision,intent(inout):: ERI(nBas,nBas,nBas,nBas)
! Local variables
integer :: p,q,r,s
double precision,allocatable :: cERI(:,:,:,:)
allocate(cERI(nBas,nBas,nBas,nBas))
do p=1,nBas
do q=1,nBas
do r=1,nBas
do s=1,nBas
cERI(p,q,r,s) = ERI(p,r,q,s)
enddo
enddo
enddo
enddo
ERI(:,:,:,:) = cERI(:,:,:,:)
end subroutine phys_to_chem_ERI

View File

@ -1,169 +0,0 @@
subroutine read_F12_integrals(nBas,S,C,F,Y,FC)
! Read one- and two-electron integrals from files
implicit none
! Input variables
integer,intent(in) :: nBas
double precision,intent(in) :: S(nBas,nBas)
! Local variables
logical :: debug
integer :: mu,nu,la,si,ka,ta
double precision :: ERI,F12,Yuk,F13C12,ExpS
! Output variables
double precision,intent(out) :: C(nBas,nBas,nBas,nBas)
double precision,intent(out) :: F(nBas,nBas,nBas,nBas)
double precision,intent(out) :: Y(nBas,nBas,nBas,nBas)
double precision,intent(out) :: FC(nBas,nBas,nBas,nBas,nBas,nBas)
debug = .false.
! Open file with integrals
open(unit=21,file='int/ERI.dat')
open(unit=22,file='int/F12.dat')
open(unit=23,file='int/Yuk.dat')
open(unit=31,file='int/3eInt_Type1.dat')
! Read 1/r12 integrals
C = 0d0
do
read(21,*,end=21) mu,nu,la,si,ERI
! <12|34>
C(mu,nu,la,si) = ERI
! <32|14>
C(la,nu,mu,si) = ERI
! <14|32>
C(mu,si,la,nu) = ERI
! <34|12>
C(la,si,mu,nu) = ERI
! <41|23>
C(si,mu,nu,la) = ERI
! <23|41>
C(nu,la,si,mu) = ERI
! <21|43>
C(nu,mu,si,la) = ERI
! <43|21>
C(si,la,nu,mu) = ERI
enddo
21 close(unit=21)
! Read f12 integrals
F = 0d0
do
read(22,*,end=22) mu,nu,la,si,F12
! <12|34>
F(mu,nu,la,si) = F12
! <32|14>
F(la,nu,mu,si) = F12
! <14|32>
F(mu,si,la,nu) = F12
! <34|12>
F(la,si,mu,nu) = F12
! <41|23>
F(si,mu,nu,la) = F12
! <23|41>
F(nu,la,si,mu) = F12
! <21|43>
F(nu,mu,si,la) = F12
! <43|21>
F(si,la,nu,mu) = F12
enddo
22 close(unit=22)
! Read f12/r12 integrals
Y = 0d0
do
read(23,*,end=23) mu,nu,la,si,Yuk
! <12|34>
Y(mu,nu,la,si) = Yuk
! <32|14>
Y(la,nu,mu,si) = Yuk
! <14|32>
Y(mu,si,la,nu) = Yuk
! <34|12>
Y(la,si,mu,nu) = Yuk
! <41|23>
Y(si,mu,nu,la) = Yuk
! <23|41>
Y(nu,la,si,mu) = Yuk
! <21|43>
Y(nu,mu,si,la) = Yuk
! <43|21>
Y(si,la,nu,mu) = Yuk
enddo
23 close(unit=23)
! Read f13/r12 integrals
FC = 0d0
do
read(31,*,end=31) mu,nu,la,si,ka,ta,F13C12
FC(mu,nu,la,si,ka,ta) = F13C12
enddo
31 close(unit=31)
! Print results
if(debug) then
write(*,'(A28)') '----------------------'
write(*,'(A28)') 'Electron repulsion integrals'
write(*,'(A28)') '----------------------'
do la=1,nBas
do si=1,nBas
call matout(nBas,nBas,C(1,1,la,si))
enddo
enddo
write(*,*)
write(*,'(A28)') '----------------------'
write(*,'(A28)') 'F12 integrals'
write(*,'(A28)') '----------------------'
do la=1,nBas
do si=1,nBas
call matout(nBas,nBas,F(1,1,la,si))
enddo
enddo
write(*,*)
write(*,'(A28)') '----------------------'
write(*,'(A28)') 'Yukawa integrals'
write(*,'(A28)') '----------------------'
do la=1,nBas
do si=1,nBas
call matout(nBas,nBas,Y(1,1,la,si))
enddo
enddo
write(*,*)
endif
! Read exponent of Slater geminal
open(unit=4,file='input/geminal')
read(4,*) ExpS
close(unit=4)
! Transform two-electron integrals
! do mu=1,nBas
! do nu=1,nBas
! do la=1,nBas
! do si=1,nBas
! F(mu,nu,la,si) = (S(mu,la)*S(nu,si) - F(mu,nu,la,si))/ExpS
! Y(mu,nu,la,si) = (C(mu,nu,la,si) - Y(mu,nu,la,si))/ExpS
! enddo
! enddo
! enddo
! enddo
end subroutine read_F12_integrals

View File

@ -1,56 +0,0 @@
subroutine read_LR(nBas,G)
! Read the long-range two-electron integrals from files
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
! Local variables
integer :: mu,nu,la,si
double precision :: ERI
double precision :: lambda
! Output variables
double precision,intent(out) :: G(nBas,nBas,nBas,nBas)
! Open file with integrals
lambda = 1d0
print*, 'Scaling integrals by ',lambda
open(unit=11,file='int/ERI_lr.dat')
! Read two-electron integrals
G(:,:,:,:) = 0d0
do
read(11,*,end=11) mu,nu,la,si,ERI
ERI = lambda*ERI
! <12|34>
G(mu,nu,la,si) = ERI
! <32|14>
G(la,nu,mu,si) = ERI
! <14|32>
G(mu,si,la,nu) = ERI
! <34|12>
G(la,si,mu,nu) = ERI
! <41|23>
G(si,mu,nu,la) = ERI
! <23|41>
G(nu,la,si,mu) = ERI
! <21|43>
G(nu,mu,si,la) = ERI
! <43|21>
G(si,la,nu,mu) = ERI
enddo
11 close(unit=11)
end subroutine read_LR