4
1
mirror of https://github.com/pfloos/quack synced 2025-01-03 10:05:59 +01:00

saving work on Dav on Olympe

This commit is contained in:
Abdallah Ammar 2024-11-04 11:29:41 +01:00
parent ab4cca296e
commit b0eb4cb55e
3 changed files with 505 additions and 98 deletions

View File

@ -126,110 +126,74 @@ subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS
allocate(Bpp(nVV,nOO),Cpp(nVV,nVV),Dpp(nOO,nOO)) allocate(Bpp(nVV,nOO),Cpp(nVV,nVV),Dpp(nOO,nOO))
allocate(KB_sta(nVV,nOO),KC_sta(nVV,nVV),KD_sta(nOO,nOO)) allocate(KB_sta(nVV,nOO),KC_sta(nVV,nVV),KD_sta(nOO,nOO))
!print*, 'RGW_ppBSE_static_kernel_C:'
!call wall_time(tt1)
call RGW_ppBSE_static_kernel_C(ispin,eta,nOrb,nC,nO,nV,nR,nS,nVV,1d0,ERI,OmRPA,rho_RPA,KC_sta) call RGW_ppBSE_static_kernel_C(ispin,eta,nOrb,nC,nO,nV,nR,nS,nVV,1d0,ERI,OmRPA,rho_RPA,KC_sta)
!call wall_time(tt2)
!write(*,'(A,1X,F10.3)'), 'wall time for RGW_ppBSE_static_kernel_C (sec)', tt2-tt1
!print*, 'RGW_ppBSE_static_kernel_D:'
!call wall_time(tt1)
call RGW_ppBSE_static_kernel_D(ispin,eta,nOrb,nC,nO,nV,nR,nS,nOO,1d0,ERI,OmRPA,rho_RPA,KD_sta) call RGW_ppBSE_static_kernel_D(ispin,eta,nOrb,nC,nO,nV,nR,nS,nOO,1d0,ERI,OmRPA,rho_RPA,KD_sta)
!call wall_time(tt2)
!write(*,'(A,1X,F10.3)'), 'wall time for RGW_ppBSE_static_kernel_D (sec)', tt2-tt1
if(.not.TDA) then if(.not.TDA) then
!print*, 'RGW_ppBSE_static_kernel_B:'
!call wall_time(tt1)
call RGW_ppBSE_static_kernel_B(ispin,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,1d0,ERI,OmRPA,rho_RPA,KB_sta) call RGW_ppBSE_static_kernel_B(ispin,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,1d0,ERI,OmRPA,rho_RPA,KB_sta)
!call wall_time(tt2)
!write(*,'(A,1X,F10.3)'), 'wall time for RGW_ppBSE_static_kernel_B (sec)', tt2-tt1
endif endif
!print*, 'ppLR_C:'
!call wall_time(tt1)
call ppLR_C(ispin,nOrb,nC,nO,nV,nR,nVV,1d0,eGW,ERI,Cpp) call ppLR_C(ispin,nOrb,nC,nO,nV,nR,nVV,1d0,eGW,ERI,Cpp)
!call wall_time(tt2)
!write(*,'(A,1X,F10.3)'), 'wall time for ppLR_C (sec)', tt2-tt1
!print*, 'ppLR_D:'
!call wall_time(tt1)
call ppLR_D(ispin,nOrb,nC,nO,nV,nR,nOO,1d0,eGW,ERI,Dpp) call ppLR_D(ispin,nOrb,nC,nO,nV,nR,nOO,1d0,eGW,ERI,Dpp)
!call wall_time(tt2)
!write(*,'(A,1X,F10.3)'), 'wall time for ppLR_D (sec)', tt2-tt1
if(.not.TDA) then if(.not.TDA) then
!print*, 'ppLR_B:'
!call wall_time(tt1)
call ppLR_B(ispin,nOrb,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp) call ppLR_B(ispin,nOrb,nC,nO,nV,nR,nOO,nVV,1d0,ERI,Bpp)
!call wall_time(tt2)
!write(*,'(A,1X,F10.3)'), 'wall time for ppLR_B (sec)', tt2-tt1
endif endif
Bpp(:,:) = Bpp(:,:) + KB_sta(:,:) Bpp(:,:) = Bpp(:,:) + KB_sta(:,:)
Cpp(:,:) = Cpp(:,:) + KC_sta(:,:) Cpp(:,:) = Cpp(:,:) + KC_sta(:,:)
Dpp(:,:) = Dpp(:,:) + KD_sta(:,:) Dpp(:,:) = Dpp(:,:) + KD_sta(:,:)
!print*, 'ppLR:'
!call wall_time(tt1)
call ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcBSE(ispin)) call ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcBSE(ispin))
!call wall_time(tt2)
!write(*,'(A,1X,F10.3)'), 'wall time for ppLR (sec)', tt2-tt1
deallocate(Bpp,Cpp,Dpp,KB_sta,KC_sta,KD_sta) deallocate(Bpp,Cpp,Dpp,KB_sta,KC_sta,KD_sta)
!
! print*, 'LAPACK:'
! print*, Om2
! print*, Om1
! --- ! ---
! --- !! ---
! Davidson !! Davidson
! --- !! ---
! n_states = nOO + 5 !n_states = nOO + 5
! n_states_diag = n_states + 4 !n_states_diag = n_states + 4
! allocate(Om(nOO+nVV), R(nOO+nVV,n_states_diag)) !allocate(Om(nOO+nVV), R(nOO+nVV,n_states_diag))
!
! supp_data_int = 1 !supp_data_int_size = 1
! allocate(supp_data_int(supp_data_int_size)) !allocate(supp_data_int(supp_data_int_size))
! supp_data_int(1) = nS !supp_data_int(1) = nS
!
! supp_data_dbl_size = nS + nOrb*nOrb*nS + 1 !supp_data_dbl_size = nS + nOrb*nOrb*nS + 1
! allocate(supp_data_dbl(supp_data_dbl_size)) !allocate(supp_data_dbl(supp_data_dbl_size))
! ! scalars !! scalars
! supp_data_dbl(1) = eta !supp_data_dbl(1) = eta
! i_data = 1 !i_data = 1
! ! rho_RPA !! rho_RPA
! do q = 1, nOrb !do q = 1, nOrb
! do p = 1, nOrb ! do p = 1, nOrb
! do m = 1, nS ! do m = 1, nS
! i_data = i_data + 1 ! i_data = i_data + 1
! supp_data_dbl(i_data) = rho_RPA(p,q,m) ! supp_data_dbl(i_data) = rho_RPA(p,q,m)
! enddo ! enddo
! enddo ! enddo
! enddo !enddo
! ! OmRPA !! OmRPA
! do m = 1, nS !do m = 1, nS
! i_data = i_data + 1 ! i_data = i_data + 1
! supp_data_dbl(i_data) = OmRPA(m) ! supp_data_dbl(i_data) = OmRPA(m)
! enddo !enddo
!
! call ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, & !call ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, &
! 1.d0, & ! lambda ! 1.d0, & ! lambda
! eGW(1), & ! eGW(1), &
! 0.d0, & ! eF ! 0.d0, & ! eF
! ERI(1,1,1,1), & ! ERI(1,1,1,1), &
! supp_data_int(1), supp_data_int_size, & ! supp_data_int(1), supp_data_int_size, &
! supp_data_dbl(1), supp_data_dbl_size, & ! supp_data_dbl(1), supp_data_dbl_size, &
! Om(1), R(1,1), n_states, n_states_diag, "GW") ! Om(1), R(1,1), n_states, n_states_diag, "GW", 1)
!
! deallocate(Om, R) !deallocate(Om, R)
! deallocate(supp_data_dbl, supp_data_int) !deallocate(supp_data_dbl, supp_data_int)
! stop !stop
! --- ! ---
@ -291,10 +255,6 @@ subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS
call ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcBSE(ispin)) call ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcBSE(ispin))
deallocate(Bpp,Cpp,Dpp,KB_sta,KC_sta,KD_sta) deallocate(Bpp,Cpp,Dpp,KB_sta,KC_sta,KD_sta)
!print*, 'LAPACK:'
!print*, Om2
!print*, Om1
! --- ! ---
! Davidson ! Davidson
! --- ! ---
@ -303,7 +263,7 @@ subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS
!n_states_diag = n_states + 4 !n_states_diag = n_states + 4
!allocate(Om(nOO+nVV), R(nOO+nVV,n_states_diag)) !allocate(Om(nOO+nVV), R(nOO+nVV,n_states_diag))
!supp_data_int = 1 !supp_data_int_size = 1
!allocate(supp_data_int(supp_data_int_size)) !allocate(supp_data_int(supp_data_int_size))
!supp_data_int(1) = nS !supp_data_int(1) = nS
@ -334,7 +294,7 @@ subroutine RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS
! ERI(1,1,1,1), & ! ERI(1,1,1,1), &
! supp_data_int(1), supp_data_int_size, & ! supp_data_int(1), supp_data_int_size, &
! supp_data_dbl(1), supp_data_dbl_size, & ! supp_data_dbl(1), supp_data_dbl_size, &
! Om(1), R(1,1), n_states, n_states_diag, "GW") ! Om(1), R(1,1), n_states, n_states_diag, "GW", 1)
!deallocate(Om, R) !deallocate(Om, R)
!deallocate(supp_data_dbl, supp_data_int) !deallocate(supp_data_dbl, supp_data_int)

View File

@ -33,7 +33,7 @@ subroutine ppLR_GW_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, nS, lambda, e, eF,
call wall_time(t1) call wall_time(t1)
if((nOO+nVV) .le. 20000) then if((nOO+nVV) .le. 30000) then
call ppLR_GW_HR_calc_oneshot(ispin, nOrb, nC, nO, nR, nOO, nVV, nS, lambda, e(1), eF, n_states_diag, & call ppLR_GW_HR_calc_oneshot(ispin, nOrb, nC, nO, nR, nOO, nVV, nS, lambda, e(1), eF, n_states_diag, &
ERI(1,1,1,1), eta, rho(1,1,1), Om(1), U(1,1), W(1,1)) ERI(1,1,1,1), eta, rho(1,1,1), Om(1), U(1,1), W(1,1))

View File

@ -4,7 +4,7 @@
subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF, ERI, & subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF, ERI, &
supp_data_int, supp_data_int_size, & supp_data_int, supp_data_int_size, &
supp_data_dbl, supp_data_dbl_size, & supp_data_dbl, supp_data_dbl_size, &
Om, R, n_states, n_states_diag, kernel) Om, R, n_states, n_states_diag, kernel, mode_dav)
! !
! Extract the low n_states ! Extract the low n_states
@ -18,6 +18,54 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
! (-B.T -D) ! (-B.T -D)
! !
implicit none
logical, intent(in) :: TDA
integer, intent(in) :: ispin
integer, intent(in) :: nC, nO, nR, nOrb, nOO, nVV
integer, intent(in) :: n_states ! nb of physical states
integer, intent(in) :: n_states_diag ! nb of states used to get n_states
integer, intent(in) :: supp_data_int_size
integer, intent(in) :: supp_data_dbl_size
integer, intent(in) :: mode_dav
character(len=*), intent(in) :: kernel
double precision, intent(in) :: lambda, eF
double precision, intent(in) :: e(nOrb)
double precision, intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
integer, intent(in) :: supp_data_int(supp_data_int_size)
double precision, intent(in) :: supp_data_dbl(supp_data_dbl_size)
double precision, intent(out) :: Om(n_states)
double precision, intent(out) :: R(nOO+nVV,n_states_diag)
if(mode_dav .eq. 1) then
call ppLR_davidson_1(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e(1), eF, ERI(1,1,1,1), &
supp_data_int(1), supp_data_int_size, supp_data_dbl(1), supp_data_dbl_size, &
Om(1), R(1,1), n_states, n_states_diag, kernel)
elseif(mode_dav .eq. 2) then
call ppLR_davidson_2(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e(1), eF, ERI(1,1,1,1), &
supp_data_int(1), supp_data_int_size, supp_data_dbl(1), supp_data_dbl_size, &
Om(1), R(1,1), n_states, n_states_diag, kernel)
else
print*, " unknown Davidson's variant"
stop
endif
return
end
! ---
subroutine ppLR_davidson_1(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF, ERI, &
supp_data_int, supp_data_int_size, &
supp_data_dbl, supp_data_dbl_size, &
Om, R, n_states, n_states_diag, kernel)
use omp_lib use omp_lib
implicit none implicit none
@ -43,16 +91,15 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
integer :: shift1, shift2 integer :: shift1, shift2
integer :: i, j, k, l, ab integer :: i, j, k, l, ab
integer :: p, q, mm, i_data, nS integer :: p, q, mm, i_data, nS
integer :: i_omax(n_states)
logical :: converged logical :: converged
character*(16384) :: write_buffer character(len=6+41*n_states) :: write_buffer
double precision :: r1, r2, dtwo_pi double precision :: r1, r2, dtwo_pi
double precision :: lambda_tmp double precision :: lambda_tmp
double precision :: to_print(2,n_states)
double precision :: mem double precision :: mem
double precision :: eta double precision :: eta
double precision :: t1, t2, tt1, tt2 double precision :: t1, t2, tt1, tt2
character(len=len(kernel)) :: kernel_name character(len=len(kernel)) :: kernel_name
integer, allocatable :: i_omax(:)
double precision, allocatable :: H_diag(:) double precision, allocatable :: H_diag(:)
double precision, allocatable :: W(:,:) double precision, allocatable :: W(:,:)
double precision, allocatable :: U(:,:) double precision, allocatable :: U(:,:)
@ -61,6 +108,7 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
double precision, allocatable :: overlap(:) double precision, allocatable :: overlap(:)
double precision, allocatable :: S_check(:,:) double precision, allocatable :: S_check(:,:)
double precision, allocatable :: rho_tmp(:,:,:), Om_tmp(:) double precision, allocatable :: rho_tmp(:,:,:), Om_tmp(:)
double precision, allocatable :: to_print(:,:)
double precision, external :: u_dot_u double precision, external :: u_dot_u
@ -92,7 +140,8 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
write(*,'(A40, A12)') 'Kernel: ', kernel_name write(*,'(A40, A12)') 'Kernel: ', kernel_name
allocate(i_omax(n_states))
allocate(to_print(2,n_states))
allocate(H_diag(N)) allocate(H_diag(N))
allocate(U(N,M)) allocate(U(N,M))
allocate(W(N,M)) allocate(W(N,M))
@ -101,7 +150,7 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
allocate(residual_norm(n_states_diag)) allocate(residual_norm(n_states_diag))
mem = 8.d0 * dble(nOrb + nOrb**4 + N*n_states) & mem = 8.d0 * dble(nOrb + nOrb**4 + N*n_states) &
+ 8.d0 * dble(supp_data_dbl_size) + 4.d0 * dble(supp_data_int_size) + 8.d0 * dble(2*supp_data_dbl_size) + 4.d0 * dble(2*supp_data_int_size)
write(*,'(A40, F12.4)') 'I/O mem (GB) = ', mem / (1024.d0*1024.d0*1024.d0) write(*,'(A40, F12.4)') 'I/O mem (GB) = ', mem / (1024.d0*1024.d0*1024.d0)
@ -325,7 +374,6 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
W(1,1), size(W, 1), h_vec(1,1), size(h_vec, 1), & W(1,1), size(W, 1), h_vec(1,1), size(h_vec, 1), &
0.d0, W(1,shift2+1), size(W, 1)) 0.d0, W(1,shift2+1), size(W, 1))
! check if W1 = U1 h_val
!$OMP PARALLEL DEFAULT(NONE) & !$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i, k) & !$OMP PRIVATE(i, k) &
!$OMP SHARED(n_states, n_states_diag, N, shift2, U, h_val, W, H_diag, residual_norm, to_print) !$OMP SHARED(n_states, n_states_diag, N, shift2, U, h_val, W, H_diag, residual_norm, to_print)
@ -342,13 +390,11 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
!print*, " to_print", to_print
if((itertot > 1) .and. (iter == 1)) then if((itertot > 1) .and. (iter == 1)) then
continue continue
else else
write(*,'(1X, I3, 1X, 100(1X, F16.10, 1X, F12.6))') iter-1, to_print(1:2,1:n_states) write(*,'(1X, I3, 1X, 10000(1X, F16.10, 1X, F12.6))') iter-1, to_print(1:2,1:n_states)
!write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, F16.10, 1X, F16.10))') iter-1, to_print(1:2,1:n_states)
endif endif
!call wall_time(tt2) !call wall_time(tt2)
@ -361,7 +407,7 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
endif endif
do k = 1, n_states do k = 1, n_states
if(residual_norm(k) > 1.d8) then if(residual_norm(k) > 1.d10) then
print *, 'Davidson failed' print *, 'Davidson failed'
stop -1 stop -1
endif endif
@ -377,7 +423,8 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
call dgemm('N', 'N', N, n_states_diag, shift2, 1.d0, & call dgemm('N', 'N', N, n_states_diag, shift2, 1.d0, &
W(1,1), size(W, 1), h_vec(1,1), size(h_vec, 1), & W(1,1), size(W, 1), h_vec(1,1), size(h_vec, 1), &
0.d0, R, size(R, 1)) 0.d0, R(1,1), size(R, 1))
do k = 1, n_states_diag do k = 1, n_states_diag
do i = 1, N do i = 1, N
W(i,k) = R(i,k) W(i,k) = R(i,k)
@ -427,6 +474,8 @@ subroutine ppLR_davidson(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF,
print*, k, Om(k) print*, k, Om(k)
enddo enddo
deallocate(i_omax)
deallocate(to_print)
deallocate(H_diag) deallocate(H_diag)
deallocate(U) deallocate(U)
deallocate(W) deallocate(W)
@ -449,3 +498,401 @@ end
! --- ! ---
subroutine ppLR_davidson_2(ispin, TDA, nC, nO, nR, nOrb, nOO, nVV, lambda, e, eF, ERI, &
supp_data_int, supp_data_int_size, &
supp_data_dbl, supp_data_dbl_size, &
Om, R, n_states, n_states_diag, kernel)
use omp_lib
implicit none
logical, intent(in) :: TDA
integer, intent(in) :: ispin
integer, intent(in) :: nC, nO, nR, nOrb, nOO, nVV
integer, intent(in) :: n_states ! nb of physical states
integer, intent(in) :: n_states_diag ! nb of states used to get n_states
integer, intent(in) :: supp_data_int_size
integer, intent(in) :: supp_data_dbl_size
character(len=*), intent(in) :: kernel
double precision, intent(in) :: lambda, eF
double precision, intent(in) :: e(nOrb)
double precision, intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
integer, intent(in) :: supp_data_int(supp_data_int_size)
double precision, intent(in) :: supp_data_dbl(supp_data_dbl_size)
double precision, intent(out) :: Om(n_states)
double precision, intent(out) :: R(nOO+nVV,n_states_diag)
integer :: N, M, num_threads, n_states_delta
integer :: it_start, it_delta, it_size
integer :: iter, itermax, itertot
integer :: i, j, k, l, ab
integer :: p, q, mm, i_data, nS
logical :: converged
double precision :: r1, r2, dtwo_pi
double precision :: mem
double precision :: eta
double precision :: t1, t2, tt1, tt2
character(len=len(kernel)) :: kernel_name
integer, allocatable :: i_omax(:)
character(len=:), allocatable :: write_buffer
double precision, allocatable :: to_print(:,:)
double precision, allocatable :: H_diag(:)
double precision, allocatable :: W0(:,:), W1(:,:)
double precision, allocatable :: U0(:,:), U1(:,:)
double precision, allocatable :: h(:,:), h_vec(:,:), h_val(:)
double precision, allocatable :: residual_norm(:)
double precision, allocatable :: rho_tmp(:,:,:), Om_tmp(:)
double precision, external :: u_dot_u
call wall_time(t1)
dtwo_pi = 6.283185307179586d0
N = nOO + nVV
n_states_delta = min(max(25, n_states_diag/2), n_states_diag)
itermax = 8
M = n_states_diag + itermax * n_states_delta
call lower_case(trim(kernel), kernel_name)
if(M .ge. N) then
print*, 'N = ', N
print*, 'M = ', M
print*, ' use Lapack or decrease n_states and/or itermax '
stop
endif
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
write(*,'(A40, I12)') 'Number of states = ', n_states
write(*,'(A40, I12)') 'Number of states in diag = ', n_states_diag
write(*,'(A40, I12)') 'Number of states to add = ', n_states_delta
write(*,'(A40, I12)') 'Number of basis functions = ', N
write(*,'(A40, A12)') 'Kernel: ', kernel_name
allocate(character(len=50*n_states) :: write_buffer)
allocate(i_omax(n_states))
allocate(to_print(2,n_states))
allocate(H_diag(N))
allocate(U0(N,M), U1(N,n_states_diag))
allocate(W0(N,M), W1(N,n_states_diag))
allocate(h(M,M), h_vec(M,M), h_val(M))
allocate(residual_norm(n_states_diag))
mem = 8.d0 * dble(nOrb) + 8.d0 * dble(nOrb)**4 + 8.d0 * dble(N*n_states) &
+ 8.d0 * dble(2*supp_data_dbl_size) + 4.d0 * dble(2*supp_data_int_size)
write(*,'(A40, F12.4)') 'I/O mem (GB) = ', mem / (1024.d0*1024.d0*1024.d0)
mem = 8.d0 * dble(N) &
+ 8.d0 * dble(N*M) &
+ 8.d0 * dble(N*M) &
+ 8.d0 * dble(N*n_states_diag) &
+ 8.d0 * dble(N*n_states_diag) &
+ 8.d0 * dble(M*M) &
+ 8.d0 * dble(M*M) &
+ 8.d0 * dble(M) &
+ 8.d0 * dble(n_states_diag) &
+ 1.d0 * dble(50*n_states)
write(*,'(A40, F12.4)') 'tmp mem (GB) = ', mem / (1024.d0*1024.d0*1024.d0)
num_threads = omp_get_max_threads()
write(*,'(A40, I12)') 'Number of threads = ', num_threads
if(kernel_name .eq. "rpa") then
call ppLR_RPA_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e(1), eF, &
ERI(1,1,1,1), H_diag(1))
elseif(kernel_name .eq. "gw") then
nS = supp_data_int(1)
allocate(rho_tmp(nS,nOrb,nOrb))
allocate(Om_tmp(nS))
eta = supp_data_dbl(1)
i_data = 1
do q = 1, nOrb
do p = 1, nOrb
do mm = 1, nS
i_data = i_data + 1
rho_tmp(mm,p,q) = supp_data_dbl(i_data)
enddo
enddo
enddo
do mm = 1, nS
i_data = i_data + 1
Om_tmp(mm) = supp_data_dbl(i_data)
enddo
call ppLR_GW_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, nS, lambda, e(1), eF, &
ERI(1,1,1,1), eta, rho_tmp(1,1,1), Om_tmp(1), H_diag(1))
!! TODO
!elseif(kernel_name .eq. "gf2") then
else
print*, ' kernel not supported', kernel
stop
endif
U0 = 0.d0
W0 = 0.d0
U1 = 0.d0
W1 = 0.d0
! TODO: improve guess
! initialize guess
R = 0.d0
do k = 1, n_states
R(k,k) = 1.d0
enddo
do k = n_states+1, n_states_diag
do i = 1, N
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
R(i,k) = r1*dcos(r2)
enddo
R(k,k) = R(k,k) + 10.d0
call normalize(R(1,k), N)
enddo
do k = 1, n_states_diag
U0(:,k) = R(:,k)
enddo
write(6,'(A)') ''
write_buffer = '====='
do i = 1, n_states
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*n_states)
write_buffer = 'Iter'
do i = 1, n_states
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*n_states)
write_buffer = '====='
do i = 1, n_states
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*n_states)
converged = .False.
itertot = 0
do while (.not.converged)
itertot = itertot + 1
if(itertot == itermax) then
print*, 'exit before convergence !'
print*, 'itertot == itermax', itertot
exit
endif
do iter = 1, itermax-1
if(iter .eq. 1) then
it_start = 0
it_delta = n_states_diag
else
it_start = n_states_diag + n_states_delta * (iter - 2)
it_delta = n_states_delta
endif
it_size = it_start + it_delta
if((iter > 1) .or. (itertot == 1)) then
!call wall_time(tt1)
call ortho_qr(U0(1,1), size(U0, 1), N, it_size)
if(kernel_name .eq. "rpa") then
call ppLR_RPA_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e(1), eF, it_delta, &
ERI(1,1,1,1), &
U0(1,it_start+1), W0(1,it_start+1))
elseif(kernel_name .eq. "gw") then
call ppLR_GW_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, nS, lambda, e(1), eF, it_delta, &
ERI(1,1,1,1), eta, rho_tmp(1,1,1), Om_tmp(1), &
U0(1,it_start+1), W0(1,it_start+1))
!! TODO
!elseif(kernel_name .eq. "gf2") then
endif
else
! computed below
continue
endif
! h = U0.T H U0
call dgemm('T', 'N', it_size, it_size, N, 1.d0, &
U0(1,1), size(U0, 1), W0(1,1), size(W0, 1), &
0.d0, h(1,1), size(h, 1))
! h h_vec = h_val h_vec
call diag_nonsym_right(it_size, h(1,1), size(h, 1), h_vec(1,1), size(h_vec, 1), h_val(1), size(h_val, 1))
! U1(:,1:it_delta) = U0 h_vec(:,1:it_delta)
call dgemm('N', 'N', N, it_delta, it_size, 1.d0, &
U0(1,1), size(U0, 1), h_vec(1,1), size(h_vec, 1), &
0.d0, U1(1,1), size(U1, 1))
do k = 1, it_delta
call normalize(U1(1,k), N)
enddo
! W1(:,1:it_delta) = W0 h_vec(:,1:it_delta)
call dgemm('N', 'N', N, it_delta, it_size, 1.d0, &
W0(1,1), size(W0, 1), h_vec(1,1), size(h_vec, 1), &
0.d0, W1(1,1), size(W1, 1))
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(i, k) &
!$OMP SHARED(n_states, it_size, it_delta, N, U0, U1, &
!$OMP h_val, W1, H_diag, residual_norm, to_print)
!$OMP DO
do k = 1, it_delta
do i = 1, N
U1(i,k) = (h_val(k) * U1(i,k) - W1(i,k)) / max(dabs(H_diag(i) - h_val(k)), 1.d-2)
U0(i,it_size+k) = U1(i,k)
enddo
if(k <= n_states) then
residual_norm(k) = u_dot_u(U1(1,k), N)
to_print(1,k) = h_val(k)
to_print(2,k) = residual_norm(k)
endif
enddo
!$OMP END DO
!$OMP END PARALLEL
if((itertot > 1) .and. (iter == 1)) then
continue
else
write(*,'(1X, I3, 1X, 10000(1X, F16.10, 1X, F12.6))') iter-1, to_print(1:2,1:n_states)
endif
!call wall_time(tt2)
!write(*,'(A50, F12.4)') 'wall time for one Davidson iteration (sec): ', tt2-tt1
!stop
if(iter > 1) then
converged = dabs(maxval(residual_norm(1:n_states))) < 1d-15
endif
do k = 1, n_states
if(residual_norm(k) > 1.d10) then
print *, 'Davidson failed'
stop -1
endif
enddo
if(converged) exit
enddo ! loop over iter
! Re-contract U0 and update W0
! --------------------------------
call dgemm('N', 'N', N, n_states_diag, it_size, 1.d0, &
W0(1,1), size(W0, 1), h_vec(1,1), size(h_vec, 1), &
0.d0, R(1,1), size(R, 1))
do k = 1, n_states_diag
do i = 1, N
W0(i,k) = R(i,k)
enddo
enddo
call dgemm('N', 'N', N, n_states_diag, it_size, 1.d0, &
U0(1,1), size(U0, 1), h_vec(1,1), size(h_vec, 1), &
0.d0, R(1,1), size(R, 1))
do k = 1, n_states_diag
do i = 1, N
U0(i,k) = R(i,k)
enddo
enddo
call ortho_qr(U0(1,1), size(U0, 1), N, n_states_diag)
do j = 1, n_states_diag
k = 1
do while((k < N) .and. (U0(k,j) == 0.d0))
k = k+1
enddo
if(U0(k,j) * R(k,j) < 0.d0) then
do i = 1, N
W0(i,j) = -W0(i,j)
enddo
endif
enddo
enddo ! loop over while
! ---
write_buffer = '====='
do i = 1, n_states
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
print*, " Davidson eigenvalues"
do k = 1, n_states
Om(k) = h_val(k)
print*, k, Om(k)
enddo
deallocate(write_buffer)
deallocate(i_omax)
deallocate(to_print)
deallocate(H_diag)
deallocate(U0, U1)
deallocate(W0, W1)
deallocate(h)
deallocate(h_vec)
deallocate(h_val)
deallocate(residual_norm)
if(kernel_name .eq. "gw") then
deallocate(rho_tmp)
deallocate(Om_tmp)
endif
call wall_time(t2)
write(*,'(A50, F12.4)') 'total wall time for Davidson (sec): ', t2-t1
return
end
! ---