4
1
mirror of https://github.com/pfloos/quack synced 2024-12-22 12:23:50 +01:00

curvature corrected functional revisited

This commit is contained in:
Pierre-Francois Loos 2021-11-24 10:25:48 +01:00
parent c379b80eac
commit aadf942f83
25 changed files with 424 additions and 431 deletions

View File

@ -2,6 +2,7 @@
integer,parameter :: nspin = 2
integer,parameter :: nsp = 3
integer,parameter :: maxEns = 4
integer,parameter :: maxCC = 5
integer,parameter :: maxShell = 512
integer,parameter :: maxL = 7
integer,parameter :: n1eInt = 3

View File

@ -6,18 +6,18 @@
# GGA = 2: B88,G96,PBE
# MGGA = 3:
# Hybrid = 4: HF,B3LYP,PBE
4 HF
1 S51
# correlation rung:
# Hartree = 0: H
# LDA = 1: PW92,VWN3,VWN5,eVWN5
# GGA = 2: LYP,PBE
# MGGA = 3:
# Hybrid = 4: HF,B3LYP,PBE
4 HF
1 VWN5
# quadrature grid SG-n
0
# Number of states in ensemble (nEns)
4
2
# occupation numbers
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
@ -31,11 +31,11 @@
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# Ensemble weights: wEns(1),...,wEns(nEns-1)
0.00 0.00 1.00
0.95 0.00 0.00
# N-centered?
F
# Parameters for CC weight-dependent exchange functional
0.0 0.0 0.0
3
0.0 0.0 0.0
# choice of UCC exchange coefficient : 1 for Cx1, 2 for Cx2, 3 for Cx1*Cx2
2

View File

@ -1,5 +1,5 @@
# RHF UHF KS MOM
T F F F
F F T F
# MP2* MP3 MP2-F12
F F F
# CCD pCCD DCD CCSD CCSD(T)
@ -9,7 +9,7 @@
# CIS* CIS(D) CID CISD FCI
F F F F F
# RPA* RPAx* crRPA ppRPA
F F F T
F F F F
# G0F2* evGF2* qsGF2* G0F3 evGF3
F F F F F
# G0W0* evGW* qsGW* ufG0W0 ufGW

View File

@ -3,16 +3,16 @@
# MP:
# CC: maxSCF thresh DIIS n_diis
64 0.0000000001 T 5
64 0.0000001 T 5
# spin: TDA singlet triplet spin_conserved spin_flip
F T T T T
# GF: maxSCF thresh DIIS n_diis lin eta renorm
256 0.00001 T 5 T 0.00367493 3
# GW/GT: maxSCF thresh DIIS n_diis lin eta COHSEX SOSEX TDA_W G0W GW0
256 0.00001 T 5 T 0.00367493 F F F F F
256 0.00001 T 5 T 0.00 F F F F F
# ACFDT: AC Kx XBS
T T F
F T F
# BSE: BSE dBSE dTDA evDyn
T F T F
T T T F
# MCMP2: nMC nEq nWalk dt nPrint iSeed doDrift
1000000 100000 10 0.3 10000 1234 T

View File

@ -1,4 +1,4 @@
2
H 0. 0. 0.
H 0. 0. 2.000000
H 0. 0. 3.2

View File

@ -198,6 +198,9 @@ subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,sing
if(BSE) then
! eG0T0(1) = -0.5507952119d0
! eG0T0(2) = +1.540259769d0
call Bethe_Salpeter_Tmatrix(TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,nOOt,nVVt, &
Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,rho1s,rho2s,Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,rho1t,rho2t, &
ERI_MO,dipole_int,eHF,eG0T0,EcBSE)

View File

@ -62,10 +62,10 @@ subroutine dynamic_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,eGT,Omega1,O
end do
do kl=1,nOO
chi = chi - rho2(i,j,kl)*rho2(a,b,kl)*Omega2(kl)/(Omega2(kl)**2 + eta**2)
chi = chi + rho2(i,j,kl)*rho2(a,b,kl)*Omega2(kl)/(Omega2(kl)**2 + eta**2)
end do
A_dyn(ia,jb) = A_dyn(ia,jb) - 1d0*lambda*chi
A_dyn(ia,jb) = A_dyn(ia,jb) + 1d0*lambda*chi
chi = 0d0
@ -75,11 +75,11 @@ subroutine dynamic_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,eGT,Omega1,O
end do
do kl=1,nOO
eps = + OmBSE + Omega2(kl) - (eGT(a) + eGT(b))
chi = chi - rho2(i,j,kl)*rho2(a,b,kl)*eps/(eps**2 + eta**2)
eps = + OmBSE - Omega2(kl) - (eGT(a) + eGT(b))
chi = chi + rho2(i,j,kl)*rho2(a,b,kl)*eps/(eps**2 + eta**2)
end do
A_dyn(ia,jb) = A_dyn(ia,jb) + 1d0*lambda*chi
A_dyn(ia,jb) = A_dyn(ia,jb) - 1d0*lambda*chi
chi = 0d0
@ -89,11 +89,11 @@ subroutine dynamic_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,eGT,Omega1,O
end do
do kl=1,nOO
eps = + OmBSE - Omega2(kl) - (eGT(a) + eGT(b))
eps = + OmBSE + Omega2(kl) - (eGT(a) + eGT(b))
chi = chi + rho2(i,j,kl)*rho2(a,b,kl)*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) - 1d0*lambda*chi
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + 1d0*lambda*chi
end do
end do

View File

@ -49,11 +49,11 @@ subroutine static_Tmatrix_TA(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Omega1,r
enddo
do kl=1,nOO
! chi = chi - lambda*rho2(i,j,kl)*rho2(a,b,kl)*Omega2(kl)/(Omega2(kl)**2 + eta**2)
! chi = chi + lambda*rho2(i,j,kl)*rho2(a,b,kl)*Omega2(kl)/(Omega2(kl)**2 + eta**2)
chi = chi + rho2(i,j,kl)*rho2(a,b,kl)*Omega2(kl)/(Omega2(kl)**2 + eta**2)
enddo
TA(ia,jb) = TA(ia,jb) + 1d0*lambda*chi
TA(ia,jb) = TA(ia,jb) - 1d0*lambda*chi
enddo
enddo

View File

@ -53,7 +53,7 @@ subroutine static_Tmatrix_TB(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Omega1,r
chi = chi + rho2(i,b,kl)*rho2(a,j,kl)*Omega2(kl)/Omega2(kl)**2 + eta**2
enddo
TB(ia,jb) = TB(ia,jb) + 1d0*lambda*chi
TB(ia,jb) = TB(ia,jb) - 1d0*lambda*chi
enddo
enddo

View File

@ -64,11 +64,8 @@ subroutine ACFDT_Tmatrix(exchange_kernel,doXBS,dRPA,TDA_T,TDA,BSE,singlet,triple
! Useful quantities
! nOOs = nO*nO
! nVVs = nV*nV
nOOs = nO*(nO+1)/2
nVVs = nV*(nV+1)/2
nOOs = nO*nO
nVVs = nV*nV
nOOt = nO*(nO-1)/2
nVVt = nV*(nV-1)/2
@ -121,31 +118,31 @@ subroutine ACFDT_Tmatrix(exchange_kernel,doXBS,dRPA,TDA_T,TDA,BSE,singlet,triple
TA(:,:) = 0d0
TB(:,:) = 0d0
! if(doXBS) then
if(doXBS) then
! isp_T = 1
! iblock = 3
isp_T = 1
iblock = 3
! call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOs,nVVs,lambda,eT,ERI, &
! Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,EcRPA(isp_T))
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOs,nVVs,lambda,eT,ERI, &
Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,EcRPA(isp_T))
! call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI,X1s,Y1s,rho1s,X2s,Y2s,rho2s)
call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI,X1s,Y1s,rho1s,X2s,Y2s,rho2s)
! call static_Tmatrix_TA(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,ERI,Omega1s,rho1s,Omega2s,rho2s,TA)
! if(.not.TDA) call static_Tmatrix_TB(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,ERI,Omega1s,rho1s,Omega2s,rho2s,TB)
call static_Tmatrix_TA(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,ERI,Omega1s,rho1s,Omega2s,rho2s,TA)
if(.not.TDA) call static_Tmatrix_TB(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,ERI,Omega1s,rho1s,Omega2s,rho2s,TB)
! isp_T = 2
! iblock = 4
isp_T = 2
iblock = 4
! call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOt,nVVt,lambda,eT,ERI, &
! Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,EcRPA(isp_T))
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOt,nVVt,lambda,eT,ERI, &
Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,EcRPA(isp_T))
! call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI,X1t,Y1t,rho1t,X2t,Y2t,rho2t)
call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI,X1t,Y1t,rho1t,X2t,Y2t,rho2t)
! call static_Tmatrix_TA(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,ERI,Omega1t,rho1t,Omega2t,rho2t,TA)
! if(.not.TDA) call static_Tmatrix_TB(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,ERI,Omega1t,rho1t,Omega2t,rho2t,TB)
call static_Tmatrix_TA(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,ERI,Omega1t,rho1t,Omega2t,rho2t,TA)
if(.not.TDA) call static_Tmatrix_TB(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,ERI,Omega1t,rho1t,Omega2t,rho2t,TB)
! end if
end if
call linear_response_Tmatrix(ispin,.false.,TDA,eta,nBas,nC,nO,nV,nR,nS,lambda,eGT,ERI,TA,TB, &
EcAC(ispin),Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
@ -191,31 +188,31 @@ subroutine ACFDT_Tmatrix(exchange_kernel,doXBS,dRPA,TDA_T,TDA,BSE,singlet,triple
TA(:,:) = 0d0
TB(:,:) = 0d0
! if(doXBS) then
if(doXBS) then
! isp_T = 1
! iblock = 3
isp_T = 1
iblock = 3
! call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOs,nVVs,lambda,eT,ERI, &
! Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,EcRPA(isp_T))
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOs,nVVs,lambda,eT,ERI, &
Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,EcRPA(isp_T))
! call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI,X1s,Y1s,rho1s,X2s,Y2s,rho2s)
call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI,X1s,Y1s,rho1s,X2s,Y2s,rho2s)
! call static_Tmatrix_TA(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,ERI,Omega1s,rho1s,Omega2s,rho2s,TA)
! if(.not.TDA) call static_Tmatrix_TB(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,ERI,Omega1s,rho1s,Omega2s,rho2s,TB)
call static_Tmatrix_TA(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,ERI,Omega1s,rho1s,Omega2s,rho2s,TA)
if(.not.TDA) call static_Tmatrix_TB(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,lambda,ERI,Omega1s,rho1s,Omega2s,rho2s,TB)
! isp_T = 2
! iblock = 4
isp_T = 2
iblock = 4
! call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOt,nVVt,lambda,eT,ERI, &
! Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,EcRPA(isp_T))
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOt,nVVt,lambda,eT,ERI, &
Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,EcRPA(isp_T))
! call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI,X1t,Y1t,rho1t,X2t,Y2t,rho2t)
call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI,X1t,Y1t,rho1t,X2t,Y2t,rho2t)
! call static_Tmatrix_TA(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,ERI,Omega1t,rho1t,Omega2t,rho2t,TA)
! if(.not.TDA) call static_Tmatrix_TB(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,ERI,Omega1t,rho1t,Omega2t,rho2t,TB)
call static_Tmatrix_TA(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,ERI,Omega1t,rho1t,Omega2t,rho2t,TA)
if(.not.TDA) call static_Tmatrix_TB(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,lambda,ERI,Omega1t,rho1t,Omega2t,rho2t,TB)
! end if
end if
call linear_response_Tmatrix(ispin,.false.,TDA,eta,nBas,nC,nO,nV,nR,nS,lambda,eGT,ERI,TA,TB, &
EcAC(ispin),Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))

View File

@ -1,4 +1,4 @@
subroutine UCC_lda_exchange_derivative_discontinuity(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rhow,Cx_choice,doNcentered,kappa,ExDD)
subroutine UCC_lda_exchange_derivative_discontinuity(nEns,wEns,nCC,aCC,nGrid,weight,rhow,Cx_choice,doNcentered,kappa,ExDD)
! Compute the unrestricted version of the curvature-corrected exchange ensemble derivative
@ -9,8 +9,8 @@ subroutine UCC_lda_exchange_derivative_discontinuity(nEns,wEns,aCC_w1,aCC_w2,nGr
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
double precision,intent(in) :: aCC_w1(3)
double precision,intent(in) :: aCC_w2(3)
integer,intent(in) :: nCC
double precision,intent(in) :: aCC(nCC,nEns-1)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid)
@ -46,20 +46,49 @@ subroutine UCC_lda_exchange_derivative_discontinuity(nEns,wEns,aCC_w1,aCC_w2,nGr
! Parameters for N -> N-1
a1 = aCC_w1(1)
b1 = aCC_w1(2)
c1 = aCC_w1(3)
a1 = aCC(1,1)
b1 = aCC(2,1)
c1 = aCC(3,1)
! Parameters for N -> N+1
a2 = aCC_w2(1)
b2 = aCC_w2(2)
c2 = aCC_w2(3)
a2 = aCC(1,2)
b2 = aCC(2,2)
c2 = aCC(3,2)
w1 = wEns(2)
w2 = wEns(3)
if (doNcentered) then
select case (Cx_choice)
case(1)
dCxdw1 = 2.d0*a1*(w1-1.d0)+(2.d0+3.d0*(w1-2.d0)*w1)*b1+2.d0*(w1-1.d0)*(1.d0+2.d0*(w1-2.d0)*w1)*c1
dCxdw2 = 0.d0
case(2)
dCxdw1 = 0.d0
dCxdw2 = 2.d0*a2*(w2-1.d0)+(2.d0+3.d0*(w2-2.d0)*w2)*b2+2.d0*(w2-1.d0)*(1.d0+2.d0*(w2-2.d0)*w2)*c2
case(3)
dCxdw1 = (2.d0*a1*(w1-1.d0)+(2.d0+3.d0*(w1-2.d0)*w1)*b1+2.d0*(w1-1.d0)*(1.d0+2.d0*(w1-2.d0)*w1)*c1) &
* (1d0 - w2*(2d0 - w2)*(a2 + b2*(w2 - 1d0) + c2*(w2 - 1d0)**2))
dCxdw2 = (1d0 - w1*(2d0 - w1)*(a1 + b1*(w1 - 1.d0) + c1*(w1 - 1.d0)**2)) &
* (2.d0*a2*(w2-1.d0)+(2.d0+3.d0*(w2-2.d0)*w2)*b2+2.d0*(w2-1.d0)*(1.d0+2.d0*(w2-2.d0)*w2)*c2)
case default
dCxdw1 = 0d0
dCxdw2 = 0d0
end select
else
select case (Cx_choice)
case(1)
@ -82,6 +111,8 @@ subroutine UCC_lda_exchange_derivative_discontinuity(nEns,wEns,aCC_w1,aCC_w2,nGr
dCxdw2 = 0d0
end select
end if
dCxdw1 = CxLSDA*dCxdw1
dCxdw2 = CxLSDA*dCxdw2

View File

@ -1,4 +1,4 @@
subroutine UCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,Cx_choice)
subroutine UCC_lda_exchange_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho,Cx_choice,doNcentered,Ex)
! Compute the unrestricted version of the curvature-corrected exchange functional
@ -9,12 +9,13 @@ subroutine UCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,C
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
double precision,intent(in) :: aCC_w1(3)
double precision,intent(in) :: aCC_w2(3)
integer,intent(in) :: nCC
double precision,intent(in) :: aCC(nCC,nEns-1)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rho(nGrid)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
! Local variables
@ -55,25 +56,38 @@ subroutine UCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,C
! Parameters for He N -> N-1
a1 = aCC_w1(1)
b1 = aCC_w1(2)
c1 = aCC_w1(3)
a1 = aCC(1,1)
b1 = aCC(2,1)
c1 = aCC(3,1)
! Parameters for He N -> N+1
a2 = aCC_w2(1)
b2 = aCC_w2(2)
c2 = aCC_w2(3)
a2 = aCC(1,2)
b2 = aCC(2,2)
c2 = aCC(3,2)
! Fx1 for states N and N-1
! Fx2 for states N and N+1
if(doNcentered) then
w1 = wEns(2)
Fx1 = 1d0 - w1*(2d0 - w1)*(a1 + b1*(w1 - 1d0) + c1*(w1 - 1d0)**2)
w2 = wEns(3)
Fx2 = 1d0 - w2*(2d0 - w2)*(a2 + b2*(w2 - 1d0) + c2*(w2 - 1d0)**2)
else
w1 = wEns(2)
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
w2 = wEns(3)
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
endif
select case (Cx_choice)
case(1)

View File

@ -1,4 +1,4 @@
subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rhow,rho,Cx_choice,doNcentered,kappa,Ex)
subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow,rho,Cx_choice,doNcentered,kappa,Ex)
! Compute the unrestricted version of the curvature-corrected exchange functional
@ -9,21 +9,22 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
double precision,intent(in) :: aCC_w1(3)
double precision,intent(in) :: aCC_w2(3)
integer,intent(in) :: nCC
double precision,intent(in) :: aCC(nCC,nEns-1)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid)
double precision,intent(in) :: rho(nGrid)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
double precision,intent(in) :: kappa(nEns)
double precision,intent(in) :: kappa
! Local variables
integer :: iG
double precision :: r,rI
double precision :: e_p,dedr
double precision :: Exrr,ExrI,ExrrI
double precision :: a1,b1,c1,w1
double precision :: a2,b2,c2,w2
@ -40,15 +41,26 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
! Parameters for N -> N-1
a1 = aCC_w1(1)
b1 = aCC_w1(2)
c1 = aCC_w1(3)
a1 = aCC(1,1)
b1 = aCC(2,1)
c1 = aCC(3,1)
! Parameters for N -> N+1
a2 = aCC_w2(1)
b2 = aCC_w2(2)
c2 = aCC_w2(3)
a2 = aCC(1,2)
b2 = aCC(2,2)
c2 = aCC(3,2)
if(doNcentered) then
w1 = wEns(2)
Fx1 = 1d0 - w1*(2d0 - w1)*(a1 + b1*(w1 - 1d0) + c1*(w1 - 1d0)**2)
w2 = wEns(3)
Fx2 = 1d0 - w2*(2d0 - w2)*(a2 + b2*(w2 - 1d0) + c2*(w2 - 1d0)**2)
else
w1 = wEns(2)
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
@ -56,6 +68,8 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
w2 = wEns(3)
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
endif
select case (Cx_choice)
case(1)
@ -75,6 +89,11 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
! Compute LDA exchange matrix in the AO basis
Ex = 0d0
Exrr = 0d0
ExrI = 0d0
ExrrI = 0d0
do iG=1,nGrid
r = max(0d0,rhow(iG))
@ -85,11 +104,12 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
e_p = Cx*r**(1d0/3d0)
dedr = 1d0/3d0*Cx*r**(-2d0/3d0)
Ex = Ex - weight(iG)*dedr*r*r
Exrr = Exrr - weight(iG)*dedr*r*r
if(rI > threshold) then
Ex = Ex + weight(iG)*(e_p*rI + dedr*r*rI)
ExrI = ExrI + weight(iG)*e_p*rI
ExrrI = ExrrI + weight(iG)*dedr*r*rI
endif
@ -97,4 +117,16 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
enddo
! De-scaling for N-centered ensemble
if(doNcentered) then
Exrr = kappa*Exrr
ExrI = kappa*ExrI
endif
Ex = Exrr + ExrI + ExrrI
end subroutine UCC_lda_exchange_individual_energy

View File

@ -1,4 +1,4 @@
subroutine UCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice)
subroutine UCC_lda_exchange_potential(nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,rho,Fx,Cx_choice,doNcentered)
! Compute the unrestricted version of the curvature-corrected exchange potential
@ -9,14 +9,15 @@ subroutine UCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
double precision,intent(in) :: aCC_w1(3)
double precision,intent(in) :: aCC_w2(3)
integer,intent(in) :: nCC
double precision,intent(in) :: aCC(nCC,nEns-1)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
integer,intent(in) :: nBas
double precision,intent(in) :: AO(nBas,nGrid)
double precision,intent(in) :: rho(nGrid)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
! Local variables
@ -57,25 +58,37 @@ subroutine UCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,
! Parameters for He N -> N-1
a1 = aCC_w1(1)
b1 = aCC_w1(2)
c1 = aCC_w1(3)
a1 = aCC(1,1)
b1 = aCC(2,1)
c1 = aCC(3,1)
! Parameters for He N -> N+1
a2 = aCC_w2(1)
b2 = aCC_w2(2)
c2 = aCC_w2(3)
a2 = aCC(1,2)
b2 = aCC(2,2)
c2 = aCC(3,2)
! Fx1 for states N and N-1
! Fx2 for states N and N+1
if(doNcentered) then
w1 = wEns(2)
Fx1 = 1d0 - w1*(2d0 - w1)*(a1 + b1*(w1 - 1d0) + c1*(w1 - 1d0)**2)
w2 = wEns(3)
Fx2 = 1d0 - w2*(2d0 - w2)*(a2 + b2*(w2 - 1d0) + c2*(w2 - 1d0)**2)
else
w1 = wEns(2)
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
w2 = wEns(3)
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
endif
select case (Cx_choice)
case(1)

View File

@ -23,7 +23,7 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
double precision :: a_f,x0_f,xx0_f,b_f,c_f,x_f,q_f
double precision :: a_a,x0_a,xx0_a,b_a,c_a,x_a,q_a
double precision :: dfzdz,dxdrs,dxdx_p,dxdx_f,dxdx_a,decdx_p,decdx_f,decdx_a
double precision :: dzdr ,dfzdr ,drsdr ,decdr_p ,decdr_f ,decdr_a, decdr
double precision :: dzdra,dzdrb,dfzdra,dfzdrb,drsdr,decdr_p,decdr_f,decdr_a,decdra,decdrb,decdr
double precision :: ec_z,ec_p,ec_f,ec_a
double precision :: fz,d2fz
@ -67,49 +67,46 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
raI = max(0d0,rho(iG,1))
rbI = max(0d0,rho(iG,2))
! spin-up contribution
r = ra
rI = raI
if(r > threshold) then
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
x = sqrt(rs)
x_f = x*x + b_f*x + c_f
xx0_f = x0_f*x0_f + b_f*x0_f + c_f
q_f = sqrt(4d0*c_f - b_f*b_f)
ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
- b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
dxdrs = 0.5d0/sqrt(rs)
dxdx_f = 2d0*x + b_f
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
decdr_f = drsdr*dxdrs*decdx_f
Ecrr(1) = Ecrr(1) - weight(iG)*decdr_f*r*r
if(rI > threshold) then
EcrI(1) = EcrI(1) + weight(iG)*ec_f*rI
EcrrI(1) = EcrrI(1) + weight(iG)*decdr_f*r*rI
end if
end if
! up-down contribution
r = ra + rb
rI = raI + rbI
! spin-up contribution
! if(r > threshold) then
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
! x = sqrt(rs)
!
! x_f = x*x + b_f*x + c_f
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
! q_f = sqrt(4d0*c_f - b_f*b_f)
!
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
!
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
! dxdrs = 0.5d0/sqrt(rs)
! dxdx_f = 2d0*x + b_f
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
! decdr_f = drsdr*dxdrs*decdx_f
! Ecrr(1) = Ecrr(1) - weight(iG)*decdr_f*r*r
! if(rI > threshold) then
! EcrI(1) = EcrI(1) + weight(iG)*ec_f*rI
! EcrrI(1) = EcrrI(1) + weight(iG)*decdr_f*r*rI
! end if
!
! end if
! up-down contribution
if(r > threshold) then
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
@ -144,9 +141,13 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
ec_z = ec_p + ec_a*fz/d2fz*(1d0 - z**4) + (ec_f - ec_p)*fz*z**4
dzdr = (1d0 - z)/r
dfzdz = (4d0/3d0)*((1d0 + z)**(1d0/3d0) - (1d0 - z)**(1d0/3d0))/(2d0*(2d0**(1d0/3d0) - 1d0))
dfzdr = dzdr*dfzdz
dzdra = + (1d0 - z)/r
dfzdra = dzdra*dfzdz
dzdrb = - (1d0 + z)/r
dfzdrb = dzdrb*dfzdz
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
dxdrs = 0.5d0/sqrt(rs)
@ -156,20 +157,27 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
dxdx_a = 2d0*x + b_a
decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
- b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
- b_p*x0_p/xx0_p*( 2d0/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
- b_f*x0_f/xx0_f*( 2d0/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
decdx_a = a_a*( 2d0/x - 4d0*b_a/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a &
- b_a*x0_a/xx0_a*( 2/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
- b_a*x0_a/xx0_a*( 2d0/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
decdr_p = drsdr*dxdrs*decdx_p
decdr_f = drsdr*dxdrs*decdx_f
decdr_a = drsdr*dxdrs*decdx_a
decdr = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdr/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdr*z**3 &
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdr*z**4 + 4d0*(ec_f - ec_p)*fz*dzdr*z**3
decdra = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdra/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdra*z**3 &
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdra*z**4 + 4d0*(ec_f - ec_p)*fz*dzdra*z**3
decdrb = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdrb/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdrb*z**3 &
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdrb*z**4 + 4d0*(ec_f - ec_p)*fz*dzdrb*z**3
decdr = 0d0
if(ra > threshold) decdr = decdr + decdra
if(rb > threshold) decdr = decdr + decdrb
Ecrr(2) = Ecrr(2) - weight(iG)*decdr*r*r
@ -184,41 +192,38 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
! spin-down contribution
r = rb
rI = rbI
! if(r > threshold) then
if(r > threshold) then
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
! x = sqrt(rs)
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
x = sqrt(rs)
! x_f = x*x + b_f*x + c_f
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
! q_f = sqrt(4d0*c_f - b_f*b_f)
x_f = x*x + b_f*x + c_f
xx0_f = x0_f*x0_f + b_f*x0_f + c_f
q_f = sqrt(4d0*c_f - b_f*b_f)
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
- b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
! dxdrs = 0.5d0/sqrt(rs)
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
dxdrs = 0.5d0/sqrt(rs)
! dxdx_f = 2d0*x + b_f
dxdx_f = 2d0*x + b_f
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
! decdr_f = drsdr*dxdrs*decdx_f
decdr_f = drsdr*dxdrs*decdx_f
! Ecrr(3) = Ecrr(3) - weight(iG)*decdr_f*r*r
Ecrr(3) = Ecrr(3) - weight(iG)*decdr_f*r*r
! if(rI > threshold) then
if(rI > threshold) then
! EcrI(3) = EcrI(3) + weight(iG)*ec_f*rI
! EcrrI(3) = EcrrI(3) + weight(iG)*decdr_f*r*rI
EcrI(3) = EcrI(3) + weight(iG)*ec_f*rI
EcrrI(3) = EcrrI(3) + weight(iG)*decdr_f*r*rI
! end if
end if
end if
! end if
end do

View File

@ -34,7 +34,7 @@ subroutine UVWN5_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
! Parameters of the functional
a_p = +0.0621814D0/2D0
a_p = +0.0621814D0/2d0
x0_p = -0.10498d0
b_p = +3.72744d0
c_p = +12.9352d0
@ -97,7 +97,7 @@ subroutine UVWN5_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
ec_z = ec_p + ec_a*fz/d2fz*(1d0-z**4) + (ec_f - ec_p)*fz*z**4
dzdra = (1d0 - z)/r
dzdra = + (1d0 - z)/r
dfzdz = (4d0/3d0)*((1d0 + z)**(1d0/3d0) - (1d0 - z)**(1d0/3d0))/(2d0*(2d0**(1d0/3d0) - 1d0))
dfzdra = dzdra*dfzdz
@ -109,13 +109,13 @@ subroutine UVWN5_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
dxdx_a = 2d0*x + b_a
decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
- b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
- b_p*x0_p/xx0_p*( 2d0/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
- b_f*x0_f/xx0_f*( 2d0/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
decdx_a = a_a*( 2d0/x - 4d0*b_a/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a &
- b_a*x0_a/xx0_a*( 2/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
- b_a*x0_a/xx0_a*( 2d0/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
decdra_p = drsdra*dxdrs*decdx_p
decdra_f = drsdra*dxdrs*decdx_f
@ -167,13 +167,13 @@ subroutine UVWN5_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
dxdx_a = 2d0*x + b_a
decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
- b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
- b_p*x0_p/xx0_p*( 2d0/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
- b_f*x0_f/xx0_f*( 2d0/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
decdx_a = a_a*( 2d0/x - 4d0*b_a/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a &
- b_a*x0_a/xx0_a*( 2/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
- b_a*x0_a/xx0_a*( 2d0/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
decdrb_p = drsdrb*dxdrs*decdx_p
decdrb_f = drsdrb*dxdrs*decdx_f
@ -181,6 +181,7 @@ subroutine UVWN5_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
decdrb = decdrb_p + decdrb_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdrb/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdrb*z**3 &
+ (decdrb_f - decdrb_p)*fz*z**4 + (ec_f - ec_p)*dfzdrb*z**4 + 4d0*(ec_f - ec_p)*fz*dzdrb*z**3
Fc(mu,nu,2) = Fc(mu,nu,2) + weight(iG)*AO(mu,iG)*AO(nu,iG)*(ec_z + decdrb*r)
end if

View File

@ -62,8 +62,9 @@ subroutine eDFT(maxSCF,thresh,max_diis,guess_type,mix,nNuc,ZNuc,rNuc,ENuc,nBas,n
integer :: nGrid
double precision,allocatable :: root(:,:)
double precision,allocatable :: weight(:)
double precision :: aCC_w1(3)
double precision :: aCC_w2(3)
integer :: nCC
double precision,allocatable :: aCC(:,:)
double precision,allocatable :: AO(:,:)
double precision,allocatable :: dAO(:,:,:)
@ -99,21 +100,14 @@ subroutine eDFT(maxSCF,thresh,max_diis,guess_type,mix,nNuc,ZNuc,rNuc,ENuc,nBas,n
write(*,*) '******************************************'
write(*,*)
! Libxc version
! call xc_f90_version(vmajor, vminor, vmicro)
! write(*,'("Libxc version: ",I1,".",I1,".",I1)') vmajor, vminor, vmicro
! call xcinfo()
!------------------------------------------------------------------------
! DFT options
!------------------------------------------------------------------------
! Allocate ensemble weights and MO coefficients
allocate(wEns(maxEns),occnum(nBas,nspin,maxEns))
call read_options_dft(nBas,method,x_rung,x_DFA,c_rung,c_DFA,SGn,nEns,wEns,aCC_w1,aCC_w2, &
allocate(wEns(maxEns),aCC(maxCC,nEns-1),occnum(nBas,nspin,maxEns))
call read_options_dft(nBas,method,x_rung,x_DFA,c_rung,c_DFA,SGn,nEns,wEns,nCC,aCC, &
doNcentered,occnum,Cx_choice)
!------------------------------------------------------------------------
@ -245,7 +239,7 @@ subroutine eDFT(maxSCF,thresh,max_diis,guess_type,mix,nNuc,ZNuc,rNuc,ENuc,nBas,n
end do
call cpu_time(start_KS)
call eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,maxSCF,thresh,max_diis,guess_type,mix, &
call eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC(1:nCC,1:nEns-1),nGrid,weight,maxSCF,thresh,max_diis,guess_type,mix, &
nNuc,ZNuc,rNuc,ENuc,nBas,AO,dAO,S,T,V,Hc,ERI,dipole_int,X,occnum,Cx_choice,doNcentered,Ew,eKS,cKS,PKS,Vxc)
call cpu_time(end_KS)
@ -262,7 +256,7 @@ subroutine eDFT(maxSCF,thresh,max_diis,guess_type,mix,nNuc,ZNuc,rNuc,ENuc,nBas,n
if(method == 'eDFT-UKS') then
call cpu_time(start_KS)
call eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,maxSCF,thresh,max_diis,guess_type,mix, &
call eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC(1:nCC,1:nEns-1),nGrid,weight,maxSCF,thresh,max_diis,guess_type,mix, &
nNuc,ZNuc,rNuc,ENuc,nBas,AO,dAO,S,T,V,Hc,ERI,dipole_int,X,occnum,Cx_choice,doNcentered,Ew,eKS,cKS,PKS,Vxc)
call cpu_time(end_KS)

View File

@ -1,4 +1,4 @@
subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,maxSCF,thresh,max_diis,guess_type,mix, &
subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,maxSCF,thresh,max_diis,guess_type,mix, &
nNuc,ZNuc,rNuc,ENuc,nBas,AO,dAO,S,T,V,Hc,ERI,dipole_int,X,occnum,Cx_choice,doNcentered,Ew,eps,c,Pw,Vxc)
! Perform unrestricted Kohn-Sham calculation for ensembles
@ -12,8 +12,8 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
integer,intent(in) :: x_DFA,c_DFA
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
double precision,intent(in) :: aCC_w1(3)
double precision,intent(in) :: aCC_w2(3)
integer,intent(in) :: nCC
double precision,intent(in) :: aCC(nCC,nEns-1)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
integer,intent(in) :: maxSCF,max_diis,guess_type
@ -259,9 +259,9 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
! Compute exchange potential
do ispin=1,nspin
call unrestricted_exchange_potential(x_rung,x_DFA,LDA_centered,nEns,wEns(:),aCC_w1,aCC_w2,nGrid,weight(:),nBas, &
call unrestricted_exchange_potential(x_rung,x_DFA,LDA_centered,nEns,wEns(:),nCC,aCC,nGrid,weight(:),nBas, &
Pw(:,:,ispin),ERI(:,:,:,:),AO(:,:),dAO(:,:,:),rhow(:,ispin),drhow(:,:,ispin), &
Fx(:,:,ispin),FxHF(:,:,ispin),Cx_choice)
Fx(:,:,ispin),FxHF(:,:,ispin),Cx_choice,doNcentered)
end do
! Compute correlation potential
@ -338,8 +338,9 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
! Exchange energy
do ispin=1,nspin
call unrestricted_exchange_energy(x_rung,x_DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas, &
Pw(:,:,ispin),FxHF(:,:,ispin),rhow(:,ispin),drhow(:,:,ispin),Ex(ispin),Cx_choice)
call unrestricted_exchange_energy(x_rung,x_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
Pw(:,:,ispin),FxHF(:,:,ispin),rhow(:,ispin),drhow(:,:,ispin),Ex(ispin)&
,Cx_choice,doNcentered)
end do
! Correlation energy
@ -402,7 +403,7 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,aCC_w1,aCC_w2,nGrid,weig
! Compute individual energies from ensemble energy
!------------------------------------------------------------------------
call unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas, &
call unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
AO,dAO,T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,E,Om,occnum, &
Cx_choice,doNcentered)

View File

@ -149,134 +149,68 @@ subroutine print_unrestricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,
! Total Energy and IP and EA
!------------------------------------------------------------------------
! write(*,'(A60)') '-------------------------------------------------'
! write(*,'(A60)') ' IP AND EA FROM AUXILIARY ENERGIES '
! write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') ' IP AND EA FROM AUXILIARY ENERGIES '
write(*,'(A60)') '-------------------------------------------------'
! write(*,'(A43,F16.10,A4)') ' Ionization Potential 1 -> 2:',Omaux(2)+OmxcDD(2),' au'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(2), ' au'
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2), ' au'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2), ' au'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2),' au'
! write(*,*)
! write(*,'(A43,F16.10,A4)') ' Electronic Affinity 1 -> 3:',-(Omaux(3)+OmxcDD(3)),' au'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',-Omaux(3), ' au'
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3), ' au'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3), ' au'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3),' au'
! write(*,*)
! write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',Omaux(2)+OmxcDD(2)+(Omaux(3)+OmxcDD(3)),' au'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(2)+Omaux(3), ' au'
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)+OmxDD(3), ' au'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)+OmcDD(3), ' au'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)+OmxcDD(3),' au'
! write(*,*)
do iEns=2,nEns
write(*,'(A40,I2,A1,F16.10,A3)') ' Energy difference 1 -> ',iEns,':',Omaux(iEns)+OmxcDD(iEns),' au'
write(*,*)
write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iEns),' au'
write(*,*)
! write(*,'(A60)') '-------------------------------------------------'
! write(*,*)
write(*,'(A60)') '-------------------------------------------------'
write(*,*)
! write(*,'(A40,F16.10,A3)') ' Ionization Potential 1 -> 2:',(Omaux(2)+OmxcDD(2))*HaToeV,' eV'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(2)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)*HaToeV,' eV'
! write(*,*)
! write(*,'(A40,F16.10,A3)') ' Electronic Affinity 1 -> 3:',-(Omaux(3)+OmxcDD(3))*HaToeV,' eV'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',-Omaux(3)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3)*HaToeV,' eV'
! write(*,*)
! write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',(Omaux(2)+OmxcDD(2)+(Omaux(3)+OmxcDD(3)))*HaToeV,' eV'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',(Omaux(2)+Omaux(3))*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',(OmxDD(2)+OmxDD(3))*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',(OmcDD(2)+OmcDD(3))*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',(OmxcDD(2)+OmxcDD(3))*HaToeV,' eV'
! write(*,*)
write(*,'(A40,I2,A1,F16.10,A3)') ' Energy difference 1 -> ',iEns,':',(Omaux(iEns)+OmxcDD(iEns))*HaToeV,' eV'
write(*,*)
write(*,'(A44, F16.10,A3)') ' auxiliary energy contribution : ',Omaux(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iEns)*HaToeV,' eV'
write(*,*)
end do
! write(*,'(A60)') '-------------------------------------------------'
! write(*,*)
write(*,'(A60)') '-------------------------------------------------'
write(*,*)
! write(*,'(A60)') '-------------------------------------------------'
! write(*,'(A60)') ' IP and EA FROM INDIVIDUAL ENERGIES '
! write(*,'(A60)') '-------------------------------------------------'
! do iEns=1,nEns
! write(*,'(A40,I2,A2,F16.10,A3)') ' Individual energy state ',iEns,': ',E(iEns) + ENuc,' au'
! end do
! write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') ' IP and EA FROM INDIVIDUAL ENERGIES '
write(*,'(A60)') '-------------------------------------------------'
do iEns=1,nEns
write(*,'(A40,I2,A2,F16.10,A3)') ' Individual energy state ',iEns,': ',E(iEns) + ENuc,' au'
end do
write(*,'(A60)') '-------------------------------------------------'
! write(*,'(A43,F16.10,A4)') ' Ionization Potential 1 -> 2:',Om(2), ' au'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(2), ' au'
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(2), ' au'
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(2), ' au'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2), ' au'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2), ' au'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2),' au'
! write(*,*)
! write(*,'(A43,F16.10,A4)') ' Electronic Affinity 1 -> 3:',-Om(3), ' au'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',-Omx(3), ' au'
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',-Omc(3), ' au'
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',-Omxc(3), ' au'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3), ' au'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3), ' au'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3),' au'
! write(*,*)
! write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',Om(2)+Om(3), ' au'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(2)+Omx(3), ' au'
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(2)+Omc(3), ' au'
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(2)+Omxc(3), ' au'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)+OmxDD(3), ' au'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)+OmcDD(3), ' au'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)+OmxcDD(3),' au'
! write(*,*)
do iEns=2,nEns
write(*,'(A40,I2,A1,F16.10,A3)') ' Energy difference 1 -> ',iEns,':',Om(iEns), ' au'
write(*,*)
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(iEns), ' au'
write(*,*)
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iENs),' au'
write(*,*)
! write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') '-------------------------------------------------'
! write(*,'(A43,F16.10,A4)') ' Ionization Potential 1 -> 2:',Om(2)*HaToeV, ' eV'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(2)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(2)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(2)*HaToeV, ' eV'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(2)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(2)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(2)*HaToeV,' eV'
! write(*,*)
! write(*,'(A43,F16.10,A4)') ' Electronic Affinity 1 -> 3:',-Om(3)*HaToeV, ' eV'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',-Omx(3)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',-Omc(3)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',-Omxc(3)*HaToeV, ' eV'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',-OmxDD(3)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',-OmcDD(3)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',-OmxcDD(3)*HaToeV,' eV'
! write(*,*)
! write(*,'(A43,F16.10,A4)') ' Fundamental Gap :',(Om(2)+Om(3))*HaToeV, ' eV'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',(Omx(2)+Omx(3))*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',(Omc(2)+Omc(3))*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',(Omxc(2)+Omxc(3))*HaToeV, ' eV'
! write(*,*)
! write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',(OmxDD(2)+OmxDD(3))*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',(OmcDD(2)+OmcDD(3))*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',(OmxcDD(2)+OmxcDD(3))*HaToeV,' eV'
! write(*,*)
!
! write(*,'(A60)') '-------------------------------------------------'
! write(*,*)
write(*,'(A40,I2,A1,F16.10,A3)') ' Energy difference 1 -> ',iEns,':',Om(iEns)*HaToeV, ' eV'
write(*,*)
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(iEns)*HaToeV, ' eV'
write(*,*)
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iEns)*HaToeV,' eV'
write(*,*)
end do
write(*,'(A60)') '-------------------------------------------------'
write(*,*)
end subroutine print_unrestricted_individual_energy

View File

@ -1,4 +1,4 @@
subroutine read_options_dft(nBas,method,x_rung,x_DFA,c_rung,c_DFA,SGn,nEns,wEns,aCC_w1,aCC_w2, &
subroutine read_options_dft(nBas,method,x_rung,x_DFA,c_rung,c_DFA,SGn,nEns,wEns,nCC,aCC, &
doNcentered,occnum,Cx_choice)
! Read DFT options
@ -14,10 +14,11 @@ subroutine read_options_dft(nBas,method,x_rung,x_DFA,c_rung,c_DFA,SGn,nEns,wEns,
integer :: iBas
integer :: iEns
integer :: iParam
integer :: iCC
character(len=1) :: answer
double precision,allocatable :: nEl(:)
character(len=12) :: x_func,c_func
character(len=12) :: x_func
character(len=12) :: c_func
! Output variables
@ -28,8 +29,8 @@ subroutine read_options_dft(nBas,method,x_rung,x_DFA,c_rung,c_DFA,SGn,nEns,wEns,
integer,intent(out) :: nEns
logical,intent(out) :: doNcentered
double precision,intent(out) :: wEns(maxEns)
double precision,intent(out) :: aCC_w1(3)
double precision,intent(out) :: aCC_w2(3)
integer,intent(out) :: nCC
double precision,intent(out) :: aCC(maxCC,maxEns-1)
double precision,intent(out) :: occnum(nBas,nspin,maxEns)
integer,intent(out) :: Cx_choice
@ -394,22 +395,24 @@ subroutine read_options_dft(nBas,method,x_rung,x_DFA,c_rung,c_DFA,SGn,nEns,wEns,
! Read parameters for weight-dependent functional
read(1,*)
read(1,*) (aCC_w1(iParam),iParam=1,3)
read(1,*) (aCC_w2(iParam),iParam=1,3)
read(1,*) nCC
do iEns=2,nEns
read(1,*) (aCC(iCC,iEns-1),iCC=1,nCC)
end do
! Read choice of exchange coefficient
read(1,*)
read(1,*) Cx_choice
write(*,*)'----------------------------------------------------------'
write(*,*)' parameters for w1-dependent exchange functional coefficient '
write(*,*)' Parameters for weight-dependent exchange functional '
write(*,*)'----------------------------------------------------------'
call matout(3,1,aCC_w1)
write(*,*)
write(*,*)'----------------------------------------------------------'
write(*,*)' parameters for w2-dependent exchange functional coefficient '
write(*,*)'----------------------------------------------------------'
call matout(3,1,aCC_w2)
do iEns=2,nEns
write(*,'(A6,I2,A2)') 'State ',iEns,':'
do iCC=1,nCC
write(*,'(I2,F10.6)') iCC,aCC(iCC,iEns-1)
end do
end do
write(*,*)
! Close file with options

View File

@ -1,5 +1,5 @@
subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,P,FxHF, &
rho,drho,Ex,Cx_choice)
subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P,FxHF, &
rho,drho,Ex,Cx_choice,doNcentered)
! Compute the exchange energy
@ -13,8 +13,8 @@ subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,aCC_w1,a
logical,intent(in) :: LDA_centered
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
double precision,intent(in) :: aCC_w1(3)
double precision,intent(in) :: aCC_w2(3)
integer,intent(in) :: nCC
double precision,intent(in) :: aCC(nCC,nEns-1)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
integer,intent(in) :: nBas
@ -23,6 +23,7 @@ subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,aCC_w1,a
double precision,intent(in) :: rho(nGrid)
double precision,intent(in) :: drho(ncart,nGrid)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
! Local variables
@ -42,8 +43,8 @@ subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,aCC_w1,a
case(1)
call unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,&
rho,Ex,Cx_choice)
call unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,&
rho,Ex,Cx_choice,doNcentered)
! GGA functionals
@ -61,7 +62,7 @@ subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,aCC_w1,a
case(4)
call unrestricted_hybrid_exchange_energy(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,P,FxHF, &
call unrestricted_hybrid_exchange_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P,FxHF, &
rho,drho,Ex,Cx_choice)
end select

View File

@ -1,5 +1,5 @@
subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,P, &
ERI,AO,dAO,rho,drho,Fx,FxHF,Cx_choice)
subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P, &
ERI,AO,dAO,rho,drho,Fx,FxHF,Cx_choice,doNcentered)
! Compute the exchange potential
@ -13,8 +13,8 @@ subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,aCC_w
logical,intent(in) :: LDA_centered
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
double precision,intent(in) :: aCC_w1(3)
double precision,intent(in) :: aCC_w2(3)
integer,intent(in) :: nCC
double precision,intent(in) :: aCC(nCC,nEns-1)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
integer,intent(in) :: nBas
@ -25,6 +25,7 @@ subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,aCC_w
double precision,intent(in) :: rho(nGrid)
double precision,intent(in) :: drho(ncart,nGrid)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
! Local variables
@ -49,7 +50,8 @@ subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,aCC_w
case(1)
call unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice)
call unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,rho,Fx,&
Cx_choice,doNcentered)
! GGA functionals
@ -67,7 +69,7 @@ subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,aCC_w
case(4)
call unrestricted_hybrid_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,P, &
call unrestricted_hybrid_exchange_potential(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P, &
ERI,AO,dAO,rho,drho,Fx,FxHF,Cx_choice)
end select

View File

@ -150,21 +150,6 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
end do
!------------------------------------------------------------------------
! Checking Hartree contributions for each individual states
!------------------------------------------------------------------------
! print*,'Hartree contributions for each individual states'
! print*,''
! print*,''
! print*,'EJ(aa,1)=',EJ(1,1),'EJ(ab,1)=',EJ(2,1),'EJ(bb,1)=',EJ(3,1)
! print*,''
! print*,'EJ(aa,2)=',EJ(1,2),'EJ(ab,2)=',EJ(2,2),'EJ(bb,2)=',EJ(3,2)
! print*,''
! print*,'EJ(aa,3)=',EJ(1,3),'EJ(ab,3)=',EJ(2,3),'EJ(bb,3)=',EJ(3,3)
! print*,''
!------------------------------------------------------------------------
! Individual exchange energy
!------------------------------------------------------------------------
@ -175,37 +160,10 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
Pw(:,:,ispin),P(:,:,ispin,iEns),rhow(:,ispin),drhow(:,:,ispin), &
rho(:,ispin,iEns),drho(:,:,ispin,iEns),Cx_choice,doNcentered,kappa(iEns), &
Ex(ispin,iEns))
end do
end do
!------------------------------------------------------------------------
! Checking exchange contributions for each individual states
!------------------------------------------------------------------------
! print*,''
! print*,''
! print*,'Exchange contributions for each individual states'
! print*,''
! print*,''
! print*,'Ex(aa,1) =' ,Ex(1,1),'Ex(bb,1) =' ,Ex(2,1)
! print*,''
! print*,'Ex(aa,2) =' ,Ex(1,2),'Ex(bb,2) =' ,Ex(2,2)
! print*,''
! print*,'Ex(aa,3) =' ,Ex(1,3),'Ex(bb,3) =' ,Ex(2,3)
!------------------------------------------------------------------------
! Checking number of alpha and beta electrons for each individual states
!------------------------------------------------------------------------
! print*,''
! print*,''
! print*,'Checking number of alpha and beta electrons for each individual states'
! print*,''
! print*,''
! print*,'nEl(a,1) = ',electron_number(nGrid,weight,rho(:,1,1)),'nEl(b,1) = ',electron_number(nGrid,weight,rho(:,2,1))
! print*,''
! print*,'nEl(a,2) = ',electron_number(nGrid,weight,rho(:,1,2)),'nEl(b,2) = ',electron_number(nGrid,weight,rho(:,2,2))
! print*,''
! print*,'nEl(a,3) = ',electron_number(nGrid,weight,rho(:,1,3)),'nEl(b,3) = ',electron_number(nGrid,weight,rho(:,2,3))
!------------------------------------------------------------------------
! Individual correlation energy
!------------------------------------------------------------------------

View File

@ -1,4 +1,4 @@
subroutine unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,Cx_choice)
subroutine unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,rho,Ex,Cx_choice,doNcentered)
! Select LDA exchange functional
@ -11,12 +11,13 @@ subroutine unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,aCC_w1,aC
logical,intent(in) :: LDA_centered
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
double precision,intent(in) :: aCC_w1(3)
double precision,intent(in) :: aCC_w2(3)
integer,intent(in) :: nCC
double precision,intent(in) :: aCC(nCC,nEns-1)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rho(nGrid)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
! Output variables
@ -32,7 +33,7 @@ subroutine unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,aCC_w1,aC
case (2)
call UCC_lda_exchange_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rho,Ex,Cx_choice)
call UCC_lda_exchange_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho,Cx_choice,doNcentered,Ex)
case default

View File

@ -1,4 +1,5 @@
subroutine unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice)
subroutine unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,rho,Fx &
,Cx_choice,doNcentered)
! Select LDA correlation potential
@ -12,14 +13,15 @@ subroutine unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1
integer,intent(in) :: DFA
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
double precision,intent(in) :: aCC_w1(3)
double precision,intent(in) :: aCC_w2(3)
integer,intent(in) :: nCC
double precision,intent(in) :: aCC(nCC,nEns-1)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
integer,intent(in) :: nBas
double precision,intent(in) :: AO(nBas,nGrid)
double precision,intent(in) :: rho(nGrid)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
! Output variables
@ -35,7 +37,7 @@ subroutine unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,aCC_w1
case (2)
call UCC_lda_exchange_potential(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,rho,Fx,Cx_choice)
call UCC_lda_exchange_potential(nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,rho,Fx,Cx_choice,doNcentered)
case default