4
1
mirror of https://github.com/pfloos/quack synced 2025-01-05 11:00:21 +01:00

spin flip

This commit is contained in:
Pierre-Francois Loos 2020-09-24 16:39:15 +02:00
parent ff58cd17c6
commit a611ee7442
9 changed files with 39 additions and 28 deletions

View File

@ -7,13 +7,13 @@
# drCCD rCCD lCCD pCCD # drCCD rCCD lCCD pCCD
F F F F F F F F
# CIS CID CISD # CIS CID CISD
F F F T F F
# RPA RPAx ppRPA # RPA RPAx ppRPA
F F F F F F
# G0F2 evGF2 G0F3 evGF3 # G0F2 evGF2 G0F3 evGF3
F F F F F F F F
# G0W0 evGW qsGW # G0W0 evGW qsGW
T F F F F F
# G0T0 evGT qsGT # G0T0 evGT qsGT
F F F F F F
# MCMP2 # MCMP2

View File

@ -5,7 +5,7 @@
# CC: maxSCF thresh DIIS n_diis # CC: maxSCF thresh DIIS n_diis
64 0.0000001 T 5 64 0.0000001 T 5
# spin: singlet triplet spin_conserved spin_flip TDA # spin: singlet triplet spin_conserved spin_flip TDA
T T T T T T T T T F
# GF: maxSCF thresh DIIS n_diis lin eta renorm # GF: maxSCF thresh DIIS n_diis lin eta renorm
256 0.00001 T 5 T 0.0 3 256 0.00001 T 5 T 0.0 3
# GW/GT: maxSCF thresh DIIS n_diis lin eta COHSEX SOSEX TDA_W G0W GW0 # GW/GT: maxSCF thresh DIIS n_diis lin eta COHSEX SOSEX TDA_W G0W GW0

View File

@ -586,7 +586,15 @@ program QuAcK
if(doCIS) then if(doCIS) then
call cpu_time(start_CIS) call cpu_time(start_CIS)
if(unrestricted) then
call UCIS(spin_conserved,spin_flip,nBas,nC,nO,nV,nR,nS,ERI_MO_aaaa,ERI_MO_aabb,ERI_MO_bbbb,ERI_MO_abab,eHF)
else
call CIS(singlet,triplet,nBas,nC,nO,nV,nR,nS,ERI_MO,eHF) call CIS(singlet,triplet,nBas,nC,nO,nV,nR,nS,ERI_MO,eHF)
end if
call cpu_time(end_CIS) call cpu_time(end_CIS)
t_CIS = end_CIS - start_CIS t_CIS = end_CIS - start_CIS
@ -636,12 +644,12 @@ program QuAcK
call cpu_time(start_RPA) call cpu_time(start_RPA)
if(unrestricted) then if(unrestricted) then
call UdRPA(doACFDT,exchange_kernel,spin_conserved,spin_flip,0d0,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, & call UdRPA(TDA,doACFDT,exchange_kernel,spin_conserved,spin_flip,0d0,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
ERI_MO_aaaa,ERI_MO_aabb,ERI_MO_bbbb,ERI_MO_abab,eHF) ERI_MO_aaaa,ERI_MO_aabb,ERI_MO_bbbb,ERI_MO_abab,eHF)
else else
call dRPA(doACFDT,exchange_kernel,singlet,triplet,0d0,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF) call dRPA(TDA,doACFDT,exchange_kernel,singlet,triplet,0d0,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
end if end if
call cpu_time(end_RPA) call cpu_time(end_RPA)
@ -661,12 +669,12 @@ program QuAcK
call cpu_time(start_RPAx) call cpu_time(start_RPAx)
if(unrestricted) then if(unrestricted) then
call URPAx(doACFDT,exchange_kernel,spin_conserved,spin_flip,0d0,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, & call URPAx(TDA,doACFDT,exchange_kernel,spin_conserved,spin_flip,0d0,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
ERI_MO_aaaa,ERI_MO_aabb,ERI_MO_bbbb,ERI_MO_abab,eHF) ERI_MO_aaaa,ERI_MO_aabb,ERI_MO_bbbb,ERI_MO_abab,eHF)
else else
call RPAx(doACFDT,exchange_kernel,singlet,triplet,0d0,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF) call RPAx(TDA,doACFDT,exchange_kernel,singlet,triplet,0d0,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
end if end if
call cpu_time(end_RPAx) call cpu_time(end_RPAx)

View File

@ -1,4 +1,4 @@
subroutine RPAx(doACFDT,exchange_kernel,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF) subroutine RPAx(TDA,doACFDT,exchange_kernel,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
! Perform random phase approximation calculation with exchange (aka TDHF) ! Perform random phase approximation calculation with exchange (aka TDHF)
@ -8,6 +8,7 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,
! Input variables ! Input variables
logical,intent(in) :: TDA
logical,intent(in) :: doACFDT logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel logical,intent(in) :: exchange_kernel
logical,intent(in) :: singlet logical,intent(in) :: singlet
@ -58,7 +59,7 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,
ispin = 1 ispin = 1
call linear_response(ispin,.false.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,Omega(:,ispin),rho, & call linear_response(ispin,.false.,TDA,.false.,eta,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,Omega(:,ispin),rho, &
EcRPAx(ispin),Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) EcRPAx(ispin),Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
call print_excitation('RPAx@HF ',ispin,nS,Omega(:,ispin)) call print_excitation('RPAx@HF ',ispin,nS,Omega(:,ispin))
call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
@ -71,7 +72,7 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,
ispin = 2 ispin = 2
call linear_response(ispin,.false.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,rho,Omega(:,ispin), & call linear_response(ispin,.false.,TDA,.false.,eta,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,rho,Omega(:,ispin), &
EcRPAx(ispin),Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) EcRPAx(ispin),Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
call print_excitation('RPAx@HF ',ispin,nS,Omega(:,ispin)) call print_excitation('RPAx@HF ',ispin,nS,Omega(:,ispin))
call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
@ -103,7 +104,7 @@ subroutine RPAx(doACFDT,exchange_kernel,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,
write(*,*) '-------------------------------------------------------' write(*,*) '-------------------------------------------------------'
write(*,*) write(*,*)
call ACFDT(exchange_kernel,.false.,.false.,.false.,.false.,.false.,singlet,triplet,eta, & call ACFDT(exchange_kernel,.false.,.false.,.false.,TDA,.false.,singlet,triplet,eta, &
nBas,nC,nO,nV,nR,nS,ERI,eHF,eHF,EcAC) nBas,nC,nO,nV,nR,nS,ERI,eHF,eHF,EcAC)
write(*,*) write(*,*)

View File

@ -64,7 +64,7 @@ subroutine UCIS(spin_conserved,spin_flip,nBas,nC,nO,nV,nR,nS,ERI_aaaa,ERI_aabb,E
allocate(A_sc(nS_sc,nS_sc),Omega_sc(nS_sc)) allocate(A_sc(nS_sc,nS_sc),Omega_sc(nS_sc))
call unrestricted_linear_response_A_matrix(ispin,.false.,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,nS_sc,lambda,eHF, & call unrestricted_linear_response_A_matrix(ispin,.false.,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,lambda,eHF, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,A_sc) ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,A_sc)
if(dump_matrix) then if(dump_matrix) then
@ -102,7 +102,7 @@ subroutine UCIS(spin_conserved,spin_flip,nBas,nC,nO,nV,nR,nS,ERI_aaaa,ERI_aabb,E
allocate(A_sf(nS_sf,nS_sf),Omega_sf(nS_sf)) allocate(A_sf(nS_sf,nS_sf),Omega_sf(nS_sf))
call unrestricted_linear_response_A_matrix(ispin,.false.,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sf,nS_sf,lambda,eHF, & call unrestricted_linear_response_A_matrix(ispin,.false.,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sf,lambda,eHF, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,A_sf) ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,A_sf)
if(dump_matrix) then if(dump_matrix) then

View File

@ -1,4 +1,4 @@
subroutine URPAx(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, & subroutine URPAx(TDA,doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,e) ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,e)
! Perform random phase approximation calculation with exchange (aka TDHF) in the unrestricted formalism ! Perform random phase approximation calculation with exchange (aka TDHF) in the unrestricted formalism
@ -9,7 +9,7 @@ subroutine URPAx(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO
! Input variables ! Input variables
double precision,intent(in) :: eta logical,intent(in) :: TDA
logical,intent(in) :: doACFDT logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel logical,intent(in) :: exchange_kernel
logical,intent(in) :: spin_conserved logical,intent(in) :: spin_conserved
@ -20,6 +20,7 @@ subroutine URPAx(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO
integer,intent(in) :: nV(nspin) integer,intent(in) :: nV(nspin)
integer,intent(in) :: nR(nspin) integer,intent(in) :: nR(nspin)
integer,intent(in) :: nS(nspin) integer,intent(in) :: nS(nspin)
double precision,intent(in) :: eta
double precision,intent(in) :: ENuc double precision,intent(in) :: ENuc
double precision,intent(in) :: EUHF double precision,intent(in) :: EUHF
double precision,intent(in) :: e(nBas,nspin) double precision,intent(in) :: e(nBas,nspin)
@ -73,7 +74,7 @@ subroutine URPAx(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO
allocate(Omega_sc(nS_sc),XpY_sc(nS_sc,nS_sc),XmY_sc(nS_sc,nS_sc)) allocate(Omega_sc(nS_sc),XpY_sc(nS_sc,nS_sc),XmY_sc(nS_sc,nS_sc))
call unrestricted_linear_response(ispin,.false.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,nS_sc,1d0,e, & call unrestricted_linear_response(ispin,.false.,TDA,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,nS_sc,1d0,e, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,Omega_sc,rho_sc,EcRPAx(ispin),Omega_sc,XpY_sc,XmY_sc) ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,Omega_sc,rho_sc,EcRPAx(ispin),Omega_sc,XpY_sc,XmY_sc)
call print_excitation('URPAx ',5,nS_sc,Omega_sc) call print_excitation('URPAx ',5,nS_sc,Omega_sc)
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) ! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
@ -96,7 +97,7 @@ subroutine URPAx(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO
allocate(Omega_sf(nS_sf),XpY_sf(nS_sf,nS_sf),XmY_sf(nS_sf,nS_sf)) allocate(Omega_sf(nS_sf),XpY_sf(nS_sf,nS_sf),XmY_sf(nS_sf,nS_sf))
call unrestricted_linear_response(ispin,.false.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sf,nS_sf,1d0,e, & call unrestricted_linear_response(ispin,.false.,TDA,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sf,nS_sf,1d0,e, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,Omega_sf,rho_sf,EcRPAx(ispin),Omega_sf,XpY_sf,XmY_sf) ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,Omega_sf,rho_sf,EcRPAx(ispin),Omega_sf,XpY_sf,XmY_sf)
call print_excitation('URPAx ',6,nS_sf,Omega_sf) call print_excitation('URPAx ',6,nS_sf,Omega_sf)
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) ! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))

View File

@ -1,4 +1,4 @@
subroutine UdRPA(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, & subroutine UdRPA(TDA,doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO,nV,nR,nS,ENuc,EUHF, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,e) ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,e)
! Perform random phase approximation calculation with exchange (aka TDHF) in the unrestricted formalism ! Perform random phase approximation calculation with exchange (aka TDHF) in the unrestricted formalism
@ -9,7 +9,7 @@ subroutine UdRPA(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO
! Input variables ! Input variables
double precision,intent(in) :: eta logical,intent(in) :: TDA
logical,intent(in) :: doACFDT logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel logical,intent(in) :: exchange_kernel
logical,intent(in) :: spin_conserved logical,intent(in) :: spin_conserved
@ -20,6 +20,7 @@ subroutine UdRPA(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO
integer,intent(in) :: nV(nspin) integer,intent(in) :: nV(nspin)
integer,intent(in) :: nR(nspin) integer,intent(in) :: nR(nspin)
integer,intent(in) :: nS(nspin) integer,intent(in) :: nS(nspin)
double precision,intent(in) :: eta
double precision,intent(in) :: ENuc double precision,intent(in) :: ENuc
double precision,intent(in) :: EUHF double precision,intent(in) :: EUHF
double precision,intent(in) :: e(nBas,nspin) double precision,intent(in) :: e(nBas,nspin)
@ -73,7 +74,7 @@ subroutine UdRPA(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO
allocate(Omega_sc(nS_sc),XpY_sc(nS_sc,nS_sc),XmY_sc(nS_sc,nS_sc)) allocate(Omega_sc(nS_sc),XpY_sc(nS_sc,nS_sc),XmY_sc(nS_sc,nS_sc))
call unrestricted_linear_response(ispin,.true.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,nS_sc,1d0,e, & call unrestricted_linear_response(ispin,.true.,TDA,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,nS_sc,1d0,e, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,Omega_sc,rho_sc,EcRPA(ispin),Omega_sc,XpY_sc,XmY_sc) ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,Omega_sc,rho_sc,EcRPA(ispin),Omega_sc,XpY_sc,XmY_sc)
call print_excitation('URPA ',5,nS_sc,Omega_sc) call print_excitation('URPA ',5,nS_sc,Omega_sc)
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) ! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
@ -95,7 +96,7 @@ subroutine UdRPA(doACFDT,exchange_kernel,spin_conserved,spin_flip,eta,nBas,nC,nO
allocate(Omega_sf(nS_sf),XpY_sf(nS_sf,nS_sf),XmY_sf(nS_sf,nS_sf)) allocate(Omega_sf(nS_sf),XpY_sf(nS_sf,nS_sf),XmY_sf(nS_sf,nS_sf))
call unrestricted_linear_response(ispin,.true.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sf,nS_sf,1d0,e, & call unrestricted_linear_response(ispin,.true.,TDA,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sf,nS_sf,1d0,e, &
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,Omega_sf,rho_sf,EcRPA(ispin),Omega_sf,XpY_sf,XmY_sf) ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,Omega_sf,rho_sf,EcRPA(ispin),Omega_sf,XpY_sf,XmY_sf)
call print_excitation('URPA ',6,nS_sf,Omega_sf) call print_excitation('URPA ',6,nS_sf,Omega_sf)
! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) ! call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))

View File

@ -1,5 +1,4 @@
subroutine dRPA(doACFDT,exchange_kernel,singlet,triplet,eta, & subroutine dRPA(TDA,doACFDT,exchange_kernel,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
! Perform a direct random phase approximation calculation ! Perform a direct random phase approximation calculation
@ -9,6 +8,7 @@ subroutine dRPA(doACFDT,exchange_kernel,singlet,triplet,eta, &
! Input variables ! Input variables
logical,intent(in) :: TDA
logical,intent(in) :: doACFDT logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel logical,intent(in) :: exchange_kernel
logical,intent(in) :: singlet logical,intent(in) :: singlet
@ -59,7 +59,7 @@ subroutine dRPA(doACFDT,exchange_kernel,singlet,triplet,eta, &
ispin = 1 ispin = 1
call linear_response(ispin,.true.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,rho,Omega(:,ispin), & call linear_response(ispin,.true.,TDA,.false.,eta,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,rho,Omega(:,ispin), &
EcRPA(ispin),Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) EcRPA(ispin),Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
call print_excitation('RPA@HF ',ispin,nS,Omega(:,ispin)) call print_excitation('RPA@HF ',ispin,nS,Omega(:,ispin))
call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
@ -72,7 +72,7 @@ subroutine dRPA(doACFDT,exchange_kernel,singlet,triplet,eta, &
ispin = 2 ispin = 2
call linear_response(ispin,.true.,.false.,.false.,eta,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,rho,Omega(:,ispin), & call linear_response(ispin,.true.,TDA,.false.,eta,nBas,nC,nO,nV,nR,nS,1d0,eHF,ERI,rho,Omega(:,ispin), &
EcRPA(ispin),Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) EcRPA(ispin),Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
call print_excitation('RPA@HF ',ispin,nS,Omega(:,ispin)) call print_excitation('RPA@HF ',ispin,nS,Omega(:,ispin))
call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin)) call print_transition_vectors(nBas,nC,nO,nV,nR,nS,Omega(:,ispin),XpY(:,:,ispin),XmY(:,:,ispin))
@ -105,7 +105,7 @@ subroutine dRPA(doACFDT,exchange_kernel,singlet,triplet,eta, &
write(*,*) '------------------------------------------------------' write(*,*) '------------------------------------------------------'
write(*,*) write(*,*)
call ACFDT(exchange_kernel,.false.,.true.,.false.,.false.,.false.,singlet,triplet,eta, & call ACFDT(exchange_kernel,.false.,.true.,.false.,TDA,.false.,singlet,triplet,eta, &
nBas,nC,nO,nV,nR,nS,ERI,eHF,eHF,EcAC) nBas,nC,nO,nV,nR,nS,ERI,eHF,eHF,EcAC)
if(exchange_kernel) then if(exchange_kernel) then

View File

@ -162,7 +162,7 @@ subroutine unrestricted_linear_response_A_matrix(ispin,dRPA,nBas,nC,nO,nV,nR,nSa
jb = jb + 1 jb = jb + 1
A_lr(nSa+ia,nSa+jb) = (e(a,1) - e(i,2))*Kronecker_delta(i,j)*Kronecker_delta(a,b) & A_lr(nSa+ia,nSa+jb) = (e(a,1) - e(i,2))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
- (1d0 - delta_dRPA)*lambda*ERI_abab(b,i,a,j) - (1d0 - delta_dRPA)*lambda*ERI_abab(b,j,i,a)
end do end do
end do end do