4
1
mirror of https://github.com/pfloos/quack synced 2025-01-05 02:48:57 +01:00

CC-based GW

This commit is contained in:
Pierre-Francois Loos 2024-09-16 22:30:23 +02:00
parent 81257ad362
commit 94f5fd416f
7 changed files with 891 additions and 367 deletions

View File

@ -1,353 +0,0 @@
subroutine CCG0W0(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
! CC-based GW module
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: maxSCF
double precision,intent(in) :: thresh
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
! Local variables
integer :: p,q
integer :: i,j,k,l
integer :: a,b,c,d
integer :: nSCF
double precision :: Conv
double precision,allocatable :: OVVO(:,:,:,:)
double precision,allocatable :: VOOV(:,:,:,:)
double precision,allocatable :: delta_2h1p(:,:,:,:)
double precision,allocatable :: delta_2p1h(:,:,:,:)
double precision,allocatable :: V_2h1p(:,:,:,:)
double precision,allocatable :: V_2p1h(:,:,:,:)
double precision,allocatable :: r_2h1p(:,:,:,:)
double precision,allocatable :: r_2p1h(:,:,:,:)
double precision,allocatable :: t_2h1p(:,:,:,:)
double precision,allocatable :: t_2p1h(:,:,:,:)
double precision,allocatable :: x_2h1p(:,:)
double precision,allocatable :: x_2p1h(:,:)
double precision,allocatable :: eGW(:)
double precision,allocatable :: SigGW(:,:)
double precision,allocatable :: cGW(:,:)
double precision,allocatable :: Z(:)
integer,allocatable :: order(:)
! Hello world
write(*,*)
write(*,*)'*****************************'
write(*,*)'* CC-based G0W0 Calculation *'
write(*,*)'*****************************'
write(*,*)
! Create integral batches
allocate(OVVO(nO,nV,nV,nO),VOOV(nV,nO,nO,nV))
OVVO(:,:,:,:) = ERI( 1:nO ,nO+1:nOrb,nO+1:nOrb, 1:nO )
VOOV(:,:,:,:) = ERI(nO+1:nOrb , 1:nO , 1:nO ,nO+1:nOrb)
! Form energy denominator and guess amplitudes
allocate(delta_2h1p(nO,nO,nV,nOrb),delta_2p1h(nO,nV,nV,nOrb))
allocate(V_2h1p(nOrb,nO,nO,nV),V_2p1h(nOrb,nO,nV,nV))
allocate(t_2h1p(nO,nO,nV,nOrb),t_2p1h(nO,nV,nV,nOrb))
allocate(x_2h1p(nOrb,nOrb),x_2p1h(nOrb,nOrb))
do k=nC+1,nO
do l=nC+1,nO
do c=1,nV-nR
do p=nC+1,nOrb-nR
V_2h1p(p,k,l,c) = sqrt(2d0)*ERI(p,nO+c,k,l)
end do
end do
end do
end do
do k=nC+1,nO
do c=1,nV-nR
do d=1,nV-nR
do p=nC+1,nOrb-nR
V_2p1h(p,k,c,d) = sqrt(2d0)*ERI(p,k,nO+d,nO+c)
end do
end do
end do
end do
! Initialization
allocate(r_2h1p(nO,nO,nV,nOrb),r_2p1h(nO,nV,nV,nOrb))
allocate(eGW(nOrb),SigGW(nOrb,nOrb),cGW(nOrb,nOrb),Z(nOrb))
allocate(order(nOrb))
Conv = 1d0
nSCF = 0
eGW(:) = eHF(:)
t_2h1p(:,:,:,:) = 0d0
t_2p1h(:,:,:,:) = 0d0
!------------------------------------------------------------------------
! Main SCF loop
!------------------------------------------------------------------------
write(*,*)
write(*,*)'----------------------------------------------'
write(*,*)'| CC-based G0W0 calculation |'
write(*,*)'----------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X)') &
'|','#','|','HOMO','|','LUMO','|','Conv','|'
write(*,*)'----------------------------------------------'
do while(Conv > thresh .and. nSCF < maxSCF)
! Increment
nSCF = nSCF + 1
! Compute energy differences
do i=nC+1,nO
do j=nC+1,nO
do a=1,nV-nR
do p=nC+1,nOrb-nR
delta_2h1p(i,j,a,p) = eGW(i) + eGW(j) - eGW(nO+a) - eHF(p)
end do
end do
end do
end do
do i=nC+1,nO
do a=1,nV-nR
do b=1,nV-nR
do p=nC+1,nOrb-nR
delta_2p1h(i,a,b,p) = eGW(nO+a) + eGW(nO+b) - eGW(i) - eHF(p)
end do
end do
end do
end do
! Compute intermediates
x_2h1p(:,:) = 0d0
do p=nC+1,nOrb-nR
do q=nC+1,nOrb-nR
do k=nC+1,nO
do l=nC+1,nO
do c=1,nV-nR
x_2h1p(p,q) = x_2h1p(p,q) + V_2h1p(q,k,l,c)*t_2h1p(k,l,c,p)
end do
end do
end do
end do
end do
x_2p1h(:,:) = 0d0
do p=nC+1,nOrb-nR
do q=nC+1,nOrb-nR
do k=nC+1,nO
do c=1,nV-nR
do d=1,nV-nR
x_2p1h(p,q) = x_2p1h(p,q) + V_2p1h(q,k,c,d)*t_2p1h(k,c,d,p)
end do
end do
end do
end do
end do
! Compute residual for 2h1p sector
do i=nC+1,nO
do j=nC+1,nO
do a=1,nV-nR
do p=nC+1,nOrb-nR
r_2h1p(i,j,a,p) = V_2h1p(p,i,j,a) + delta_2h1p(i,j,a,p)*t_2h1p(i,j,a,p)
do k=nC+1,nO
do c=1,nV-nR
r_2h1p(i,j,a,p) = r_2h1p(i,j,a,p) - 2d0*OVVO(j,c,a,k)*t_2h1p(i,k,c,p)
end do
end do
do q=nC+1,nOrb-nR
r_2h1p(i,j,a,p) = r_2h1p(i,j,a,p) - t_2h1p(i,j,a,q)*x_2h1p(p,q) - t_2h1p(i,j,a,q)*x_2p1h(p,q)
end do
end do
end do
end do
end do
! Compute residual for 2p1h sector
do i=nC+1,nO
do a=1,nV-nR
do b=1,nV-nR
do p=nC+1,nOrb-nR
r_2p1h(i,a,b,p) = V_2p1h(p,i,a,b) + delta_2p1h(i,a,b,p)*t_2p1h(i,a,b,p)
do k=nC+1,nO
do c=1,nV-nR
r_2p1h(i,a,b,p) = r_2p1h(i,a,b,p) + 2d0*VOOV(a,k,i,c)*t_2p1h(k,c,b,p)
end do
end do
do q=nC+1,nOrb-nR
r_2p1h(i,a,b,p) = r_2p1h(i,a,b,p) - t_2p1h(i,a,b,q)*x_2h1p(p,q) - t_2p1h(i,a,b,q)*x_2p1h(p,q)
end do
end do
end do
end do
end do
! Check convergence
Conv = max(maxval(abs(r_2h1p)),maxval(abs(r_2p1h)))
! Update amplitudes
t_2h1p(:,:,:,:) = t_2h1p(:,:,:,:) - r_2h1p(:,:,:,:)/delta_2h1p(:,:,:,:)
t_2p1h(:,:,:,:) = t_2p1h(:,:,:,:) - r_2p1h(:,:,:,:)/delta_2p1h(:,:,:,:)
! Compute self-energy
SigGW(:,:) = 0d0
do p=nC+1,nOrb-nR
SigGW(p,p) = SigGW(p,p) + eHF(p)
do q=nC+1,nOrb-nR
do i=nC+1,nO
do j=nC+1,nO
do a=1,nV-nR
SigGW(p,q) = SigGW(p,q) + V_2h1p(p,i,j,a)*t_2h1p(i,j,a,q)
end do
end do
end do
do i=nC+1,nO
do a=1,nV-nR
do b=1,nV-nR
SigGW(p,q) = SigGW(p,q) + V_2p1h(p,i,a,b)*t_2p1h(i,a,b,q)
end do
end do
end do
end do
end do
! Diagonalize non-Hermitian matrix
call diagonalize_general_matrix(nOrb,SigGW,eGW,cGW)
do p=1,nOrb
order(p) = p
end do
call quick_sort(eGW,order,nOrb)
call set_order(cGW,order,nOrb,nOrb)
! Renormalization factor
Z(:) = 1d0
! Dump results
write(*,'(1X,A1,1X,I3,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
'|',nSCF,'|',eGW(nO)*HaToeV,'|',eGW(nO+1)*HaToeV,'|',Conv,'|'
end do
write(*,*)'----------------------------------------------'
!------------------------------------------------------------------------
! End of SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)' CCGW calculation '
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X)') &
'|','#','|','e_HF (eV)','|','Sig_c (eV)','|','Z','|','e_QP (eV)','|'
write(*,*)'-------------------------------------------------------------------------------'
do p=1,nOrb
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',p,'|',eHF(p)*HaToeV,'|',(eGW(p)-eHF(p))*HaToeV,'|',Z(p),'|',eGW(p)*HaToeV,'|'
end do
write(*,*)'-------------------------------------------------------------------------------'
end subroutine

View File

@ -68,7 +68,7 @@ subroutine RGW(dotest,doG0W0,doevGW,doqsGW,doufG0W0,doufGW,maxSCF,thresh,max_dii
double precision :: start_GW ,end_GW ,t_GW double precision :: start_GW ,end_GW ,t_GW
logical :: doCCGW logical :: doccG0W0,doccGW
!------------------------------------------------------------------------ !------------------------------------------------------------------------
! Perform G0W0 calculation ! Perform G0W0 calculation
@ -131,7 +131,7 @@ subroutine RGW(dotest,doG0W0,doevGW,doqsGW,doufG0W0,doufGW,maxSCF,thresh,max_dii
call wall_time(start_GW) call wall_time(start_GW)
! TODO ! TODO
call ufG0W0(dotest,TDA_W,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF) call ufRG0W0(dotest,TDA_W,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,eHF)
call wall_time(end_GW) call wall_time(end_GW)
t_GW = end_GW - start_GW t_GW = end_GW - start_GW
@ -161,12 +161,13 @@ subroutine RGW(dotest,doG0W0,doevGW,doqsGW,doufG0W0,doufGW,maxSCF,thresh,max_dii
! Perform CC-based G0W0 calculation ! Perform CC-based G0W0 calculation
!------------------------------------------------------------------------ !------------------------------------------------------------------------
doCCGW = .false. doccG0W0 = .false.
if(doCCGW) then if(doccG0W0) then
call wall_time(start_GW) call wall_time(start_GW)
call CCG0W0(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF) ! call ccRG0W0(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call ccRG0W0_mat(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call wall_time(end_GW) call wall_time(end_GW)
t_GW = end_GW - start_GW t_GW = end_GW - start_GW
@ -180,12 +181,13 @@ subroutine RGW(dotest,doG0W0,doevGW,doqsGW,doufG0W0,doufGW,maxSCF,thresh,max_dii
! Perform CC-based GW calculation ! Perform CC-based GW calculation
!------------------------------------------------------------------------ !------------------------------------------------------------------------
doCCGW = .false. doccGW = .true.
if(doCCGW) then if(doccGW) then
call wall_time(start_GW) call wall_time(start_GW)
call CCGW(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF) ! call ccRGW(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call ccRGW_mat(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call wall_time(end_GW) call wall_time(end_GW)
t_GW = end_GW - start_GW t_GW = end_GW - start_GW

302
src/GW/ccRG0W0.f90 Normal file
View File

@ -0,0 +1,302 @@
subroutine ccRG0W0(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
! CC-based GW module
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: maxSCF
double precision,intent(in) :: thresh
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
! Local variables
integer :: p,q
integer :: i,j,k,l
integer :: a,b,c,d
integer :: nSCF
double precision :: Conv
double precision,allocatable :: OVVO(:,:,:,:)
double precision,allocatable :: VOOV(:,:,:,:)
double precision,allocatable :: delta_2h1p(:,:,:)
double precision,allocatable :: delta_2p1h(:,:,:)
double precision,allocatable :: V_2h1p(:,:,:)
double precision,allocatable :: V_2p1h(:,:,:)
double precision,allocatable :: r_2h1p(:,:,:)
double precision,allocatable :: r_2p1h(:,:,:)
double precision,allocatable :: t_2h1p(:,:,:)
double precision,allocatable :: t_2p1h(:,:,:)
double precision :: x_2h1p
double precision :: x_2p1h
double precision,allocatable :: eGW(:)
double precision,allocatable :: Z(:)
! Hello world
write(*,*)
write(*,*)'*****************************'
write(*,*)'* CC-based G0W0 Calculation *'
write(*,*)'*****************************'
write(*,*)
! Create integral batches
allocate(OVVO(nO,nV,nV,nO),VOOV(nV,nO,nO,nV))
OVVO(:,:,:,:) = ERI( 1:nO ,nO+1:nOrb,nO+1:nOrb, 1:nO )
VOOV(:,:,:,:) = ERI(nO+1:nOrb , 1:nO , 1:nO ,nO+1:nOrb)
! Form energy denominator and guess amplitudes
allocate(delta_2h1p(nO,nO,nV),delta_2p1h(nO,nV,nV))
allocate(V_2h1p(nO,nO,nV),V_2p1h(nO,nV,nV))
allocate(t_2h1p(nO,nO,nV),t_2p1h(nO,nV,nV))
allocate(r_2h1p(nO,nO,nV),r_2p1h(nO,nV,nV))
allocate(eGW(nOrb),Z(nOrb))
! Initialization
eGW(:) = eHF(:)
!-------------------------!
! Main loop over orbitals !
!-------------------------!
do p=nO,nO
! Initialization
Conv = 1d0
nSCF = 0
t_2h1p(:,:,:) = 0d0
t_2p1h(:,:,:) = 0d0
do k=nC+1,nO
do l=nC+1,nO
do c=1,nV-nR
V_2h1p(k,l,c) = sqrt(2d0)*ERI(p,nO+c,k,l)
end do
end do
end do
do k=nC+1,nO
do c=1,nV-nR
do d=1,nV-nR
V_2p1h(k,c,d) = sqrt(2d0)*ERI(p,k,nO+d,nO+c)
end do
end do
end do
!----------------------!
! Loop over amplitudes !
!----------------------!
write(*,*)
write(*,*)'----------------------------------------------'
write(*,*)'| CC-based G0W0 calculation |'
write(*,*)'----------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X)') &
'|','#','|','HF','|','G0W0','|','Conv','|'
write(*,*)'----------------------------------------------'
do while(Conv > thresh .and. nSCF < maxSCF)
! Increment
nSCF = nSCF + 1
! Compute energy differences
do i=nC+1,nO
do j=nC+1,nO
do a=1,nV-nR
delta_2h1p(i,j,a) = eHF(i) + eHF(j) - eHF(nO+a) - eGW(p)
end do
end do
end do
do i=nC+1,nO
do a=1,nV-nR
do b=1,nV-nR
delta_2p1h(i,a,b) = eHF(nO+a) + eHF(nO+b) - eHF(i) - eGW(p)
end do
end do
end do
! Compute intermediates
x_2h1p = 0d0
do k=nC+1,nO
do l=nC+1,nO
do c=1,nV-nR
x_2h1p = x_2h1p + V_2h1p(k,l,c)*t_2h1p(k,l,c)
end do
end do
end do
x_2p1h = 0d0
do k=nC+1,nO
do c=1,nV-nR
do d=1,nV-nR
x_2p1h = x_2p1h + V_2p1h(k,c,d)*t_2p1h(k,c,d)
end do
end do
end do
! Compute residual for 2h1p sector
do i=nC+1,nO
do j=nC+1,nO
do a=1,nV-nR
r_2h1p(i,j,a) = V_2h1p(i,j,a) + delta_2h1p(i,j,a)*t_2h1p(i,j,a)
do k=nC+1,nO
do c=1,nV-nR
r_2h1p(i,j,a) = r_2h1p(i,j,a) - 2d0*OVVO(j,c,a,k)*t_2h1p(i,k,c)
end do
end do
r_2h1p(i,j,a) = r_2h1p(i,j,a) - t_2h1p(i,j,a)*x_2h1p - t_2h1p(i,j,a)*x_2p1h
end do
end do
end do
! Compute residual for 2p1h sector
do i=nC+1,nO
do a=1,nV-nR
do b=1,nV-nR
r_2p1h(i,a,b) = V_2p1h(i,a,b) + delta_2p1h(i,a,b)*t_2p1h(i,a,b)
do k=nC+1,nO
do c=1,nV-nR
r_2p1h(i,a,b) = r_2p1h(i,a,b) + 2d0*VOOV(a,k,i,c)*t_2p1h(k,c,b)
end do
end do
r_2p1h(i,a,b) = r_2p1h(i,a,b) - t_2p1h(i,a,b)*x_2h1p - t_2p1h(i,a,b)*x_2p1h
end do
end do
end do
! Check convergence
Conv = max(maxval(abs(r_2h1p)),maxval(abs(r_2p1h)))
! Update amplitudes
t_2h1p(:,:,:) = t_2h1p(:,:,:) - r_2h1p(:,:,:)/delta_2h1p(:,:,:)
t_2p1h(:,:,:) = t_2p1h(:,:,:) - r_2p1h(:,:,:)/delta_2p1h(:,:,:)
! Compute self-energy
eGW(p) = eHF(p)
do i=nC+1,nO
do j=nC+1,nO
do a=1,nV-nR
eGW(p) = eGW(p) + V_2h1p(i,j,a)*t_2h1p(i,j,a)
end do
end do
end do
do i=nC+1,nO
do a=1,nV-nR
do b=1,nV-nR
eGW(p) = eGW(p) + V_2p1h(i,a,b)*t_2p1h(i,a,b)
end do
end do
end do
! Renormalization factor
Z(:) = 1d0
! Dump results
write(*,'(1X,A1,1X,I3,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
'|',nSCF,'|',eHF(p)*HaToeV,'|',eGW(p)*HaToeV,'|',Conv,'|'
end do
write(*,*)'----------------------------------------------'
!------------------------------------------------------------------------
! End of SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)' CC-G0W0 calculation '
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X)') &
'|','#','|','e_HF (eV)','|','Sig_c (eV)','|','Z','|','e_QP (eV)','|'
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',p,'|',eHF(p)*HaToeV,'|',(eGW(p)-eHF(p))*HaToeV,'|',Z(p),'|',eGW(p)*HaToeV,'|'
write(*,*)'-------------------------------------------------------------------------------'
end do
end subroutine

278
src/GW/ccRG0W0_mat.f90 Normal file
View File

@ -0,0 +1,278 @@
subroutine ccRG0W0_mat(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
! CC-based GW module
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: maxSCF
double precision,intent(in) :: thresh
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
! Local variables
integer :: p,q
integer :: i,j,k,l
integer :: a,b,c,d
integer :: nSCF
double precision :: Conv
double precision,allocatable :: delta_2h1p(:)
double precision,allocatable :: delta_2p1h(:)
double precision,allocatable :: C_2h1p(:,:)
double precision,allocatable :: C_2p1h(:,:)
double precision,allocatable :: V_2h1p(:)
double precision,allocatable :: V_2p1h(:)
double precision,allocatable :: r_2h1p(:)
double precision,allocatable :: r_2p1h(:)
double precision,allocatable :: t_2h1p(:)
double precision,allocatable :: t_2p1h(:)
double precision,allocatable :: eGW(:)
double precision,allocatable :: Z(:)
double precision,external :: Kronecker_delta
integer :: n1h,n1p,n1h1p,n2h1p,n2p1h
integer :: ija,klc,iab,kcd
! Hello world
write(*,*)
write(*,*)'*****************************'
write(*,*)'* CC-based G0W0 Calculation *'
write(*,*)'*****************************'
write(*,*)
! Form energy denominator and guess amplitudes
n1h = nO
n1p = nV
n1h1p = n1h*n1p
n2h1p = n1h*n1h1p
n2p1h = n1p*n1h1p
allocate(delta_2h1p(n2h1p),delta_2p1h(n2p1h))
allocate(C_2h1p(n2h1p,n2h1p),C_2p1h(n2p1h,n2p1h))
allocate(V_2h1p(n2h1p),V_2p1h(n2p1h))
allocate(t_2h1p(n2h1p),t_2p1h(n2p1h))
allocate(r_2h1p(n2h1p),r_2p1h(n2p1h))
allocate(eGW(nOrb),Z(nOrb))
! Compute C2h1p and C2p1h
ija = 0
do i=nC+1,nO
do j=nC+1,nO
do a=nO+1,nOrb-nR
ija = ija + 1
klc = 0
do k=nC+1,nO
do l=nC+1,nO
do c=nO+1,nOrb-nR
klc = klc + 1
C_2h1p(ija,klc) = ((eHF(i) + eHF(j) - eHF(a))*Kronecker_delta(j,l)*Kronecker_delta(a,c) &
- 2d0*ERI(j,c,a,l))*Kronecker_delta(i,k)
end do
end do
end do
end do
end do
end do
iab = 0
do i=nC+1,nO
do a=nO+1,nOrb-nR
do b=nO+1,nOrb-nR
iab = iab + 1
kcd = 0
do k=nC+1,nO
do c=nO+1,nOrb-nR
do d=nO+1,nOrb-nR
kcd = kcd + 1
C_2p1h(iab,kcd) = ((eHF(a) + eHF(b) - eHF(i))*Kronecker_delta(i,k)*Kronecker_delta(a,c) &
+ 2d0*ERI(a,k,i,c))*Kronecker_delta(b,d)
end do
end do
end do
end do
end do
end do
!-------------------------!
! Main loop over orbitals !
!-------------------------!
eGW(:) = eHF(:)
do p=nO,nO
! Initialization
Conv = 1d0
nSCF = 0
t_2h1p(:) = 0d0
t_2p1h(:) = 0d0
! Compute energy differences
ija = 0
do i=nC+1,nO
do j=nC+1,nO
do a=nO+1,nOrb-nR
ija = ija + 1
delta_2h1p(ija) = eHF(i) + eHF(j) - eHF(a) - eHF(p)
end do
end do
end do
iab = 0
do i=nC+1,nO
do a=nO+1,nOrb-nR
do b=nO+1,nOrb-nR
iab = iab + 1
delta_2p1h(iab) = eHF(a) + eHF(b) - eHF(i) - eHF(p)
end do
end do
end do
klc = 0
do k=nC+1,nO
do l=nC+1,nO
do c=nO+1,nOrb-nR
klc = klc + 1
V_2h1p(klc) = sqrt(2d0)*ERI(p,c,k,l)
end do
end do
end do
kcd = 0
do k=nC+1,nO
do c=nO+1,nOrb-nR
do d=nO+1,nOrb-nR
kcd = kcd + 1
V_2p1h(kcd) = sqrt(2d0)*ERI(p,k,d,c)
end do
end do
end do
!----------------------!
! Loop over amplitudes !
!----------------------!
write(*,*)
write(*,*)'----------------------------------------------'
write(*,*)'| CC-based G0W0 calculation |'
write(*,*)'----------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X)') &
'|','#','|','HF','|','G0W0','|','Conv','|'
write(*,*)'----------------------------------------------'
do while(Conv > thresh .and. nSCF < maxSCF)
! Increment
nSCF = nSCF + 1
! Compute residual for 2h1p sector
r_2h1p = V_2h1p + matmul(C_2h1p,t_2h1p) - t_2h1p*eHF(p) &
- dot_product(t_2h1p,V_2h1p)*t_2h1p - t_2h1p*dot_product(V_2p1h,t_2p1h)
! Compute residual for 2p1h sector
r_2p1h = V_2p1h + matmul(C_2p1h,t_2p1h) - t_2p1h*eHF(p) &
- t_2p1h*dot_product(V_2h1p,t_2h1p) - dot_product(t_2p1h,V_2p1h)*t_2p1h
! Check convergence
Conv = max(maxval(abs(r_2h1p)),maxval(abs(r_2p1h)))
! Update amplitudes
t_2h1p(:) = t_2h1p(:) - r_2h1p(:)/delta_2h1p(:)
t_2p1h(:) = t_2p1h(:) - r_2p1h(:)/delta_2p1h(:)
! Compute quasiparticle energies
eGW(p) = eHF(p) + dot_product(V_2h1p,t_2h1p) + dot_product(V_2p1h,t_2p1h)
! Renormalization factor
Z(:) = 1d0
! Dump results
write(*,'(1X,A1,1X,I3,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
'|',nSCF,'|',eHF(p)*HaToeV,'|',eGW(p)*HaToeV,'|',Conv,'|'
end do
write(*,*)'----------------------------------------------'
!------------------------------------------------------------------------
! End of SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)' CC-G0W0 calculation '
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X)') &
'|','#','|','e_HF (eV)','|','Sig_c (eV)','|','Z','|','e_QP (eV)','|'
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',p,'|',eHF(p)*HaToeV,'|',(eGW(p)-eHF(p))*HaToeV,'|',Z(p),'|',eGW(p)*HaToeV,'|'
write(*,*)'-------------------------------------------------------------------------------'
end do
end subroutine

View File

@ -1,4 +1,4 @@
subroutine CCGW(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF) subroutine ccRGW(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
! CC-based GW module ! CC-based GW module

295
src/GW/ccRGW_mat.f90 Normal file
View File

@ -0,0 +1,295 @@
subroutine ccRGW_mat(maxSCF,thresh,nBas,nOrb,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
! CC-based GW module
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: maxSCF
double precision,intent(in) :: thresh
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
! Local variables
integer :: p,q
integer :: i,j,k,l
integer :: a,b,c,d
integer :: nSCF
double precision :: Conv
double precision,allocatable :: delta_2h1p(:,:)
double precision,allocatable :: delta_2p1h(:,:)
double precision,allocatable :: C_2h1p(:,:)
double precision,allocatable :: C_2p1h(:,:)
double precision,allocatable :: V_2h1p(:,:)
double precision,allocatable :: V_2p1h(:,:)
double precision,allocatable :: r_2h1p(:,:)
double precision,allocatable :: r_2p1h(:,:)
double precision,allocatable :: t_2h1p(:,:)
double precision,allocatable :: t_2p1h(:,:)
double precision,allocatable :: SigGW(:,:)
double precision,allocatable :: eGW(:)
double precision,allocatable :: F(:,:)
double precision,allocatable :: Z(:)
double precision,external :: Kronecker_delta
integer :: n1h,n1p,n1h1p,n2h1p,n2p1h
integer :: ija,klc,iab,kcd
! Hello world
write(*,*)
write(*,*)'*****************************'
write(*,*)'* CC-based G0W0 Calculation *'
write(*,*)'*****************************'
write(*,*)
! Form energy denominator and guess amplitudes
n1h = nO
n1p = nV
n1h1p = n1h*n1p
n2h1p = n1h*n1h1p
n2p1h = n1p*n1h1p
allocate(delta_2h1p(n2h1p,nOrb),delta_2p1h(n2p1h,nOrb))
allocate(C_2h1p(n2h1p,n2h1p),C_2p1h(n2p1h,n2p1h))
allocate(V_2h1p(nOrb,n2h1p),V_2p1h(nOrb,n2p1h))
allocate(t_2h1p(n2h1p,nOrb),t_2p1h(n2p1h,nOrb))
allocate(r_2h1p(n2h1p,nOrb),r_2p1h(n2p1h,nOrb))
allocate(F(nOrb,nOrb),eGW(nOrb),SigGW(nOrb,nOrb),Z(nOrb))
F(:,:) = 0d0
do p=nC+1,nOrb-nR
F(p,p) = eHF(p)
end do
! Compute C2h1p and C2p1h
ija = 0
do i=nC+1,nO
do j=nC+1,nO
do a=nO+1,nOrb-nR
ija = ija + 1
klc = 0
do k=nC+1,nO
do l=nC+1,nO
do c=nO+1,nOrb-nR
klc = klc + 1
C_2h1p(ija,klc) = ((eHF(i) + eHF(j) - eHF(a))*Kronecker_delta(j,l)*Kronecker_delta(a,c) &
- 2d0*ERI(j,c,a,l))*Kronecker_delta(i,k)
end do
end do
end do
end do
end do
end do
iab = 0
do i=nC+1,nO
do a=nO+1,nOrb-nR
do b=nO+1,nOrb-nR
iab = iab + 1
kcd = 0
do k=nC+1,nO
do c=nO+1,nOrb-nR
do d=nO+1,nOrb-nR
kcd = kcd + 1
C_2p1h(iab,kcd) = ((eHF(a) + eHF(b) - eHF(i))*Kronecker_delta(i,k)*Kronecker_delta(a,c) &
+ 2d0*ERI(a,k,i,c))*Kronecker_delta(b,d)
end do
end do
end do
end do
end do
end do
! Initialization
Conv = 1d0
nSCF = 0
t_2h1p(:,:) = 0d0
t_2p1h(:,:) = 0d0
! Compute energy differences
ija = 0
do i=nC+1,nO
do j=nC+1,nO
do a=nO+1,nOrb-nR
ija = ija + 1
do p=nC+1,nOrb-nR
delta_2h1p(ija,p) = eHF(i) + eHF(j) - eHF(a) - eGW(p)
end do
end do
end do
end do
iab = 0
do i=nC+1,nO
do a=nO+1,nOrb-nR
do b=nO+1,nOrb-nR
iab = iab + 1
do p=nC+1,nOrb-nR
delta_2p1h(iab,p) = eHF(a) + eHF(b) - eHF(i) - eGW(p)
end do
end do
end do
end do
klc = 0
do k=nC+1,nO
do l=nC+1,nO
do c=nO+1,nOrb-nR
klc = klc + 1
do p=nC+1,nOrb-nR
V_2h1p(p,klc) = sqrt(2d0)*ERI(p,c,k,l)
end do
end do
end do
end do
kcd = 0
do k=nC+1,nO
do c=nO+1,nOrb-nR
do d=nO+1,nOrb-nR
kcd = kcd + 1
do p=nC+1,nOrb-nR
V_2p1h(p,kcd) = sqrt(2d0)*ERI(p,k,d,c)
end do
end do
end do
end do
!----------------------!
! Loop over amplitudes !
!----------------------!
write(*,*)
write(*,*)'----------------------------------------------'
write(*,*)'| CC-based G0W0 calculation |'
write(*,*)'----------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X)') &
'|','#','|','HF','|','G0W0','|','Conv','|'
write(*,*)'----------------------------------------------'
do while(Conv > thresh .and. nSCF < maxSCF)
! Increment
nSCF = nSCF + 1
! Compute residual for 2h1p sector
r_2h1p = transpose(V_2h1p) + matmul(C_2h1p,t_2h1p) - matmul(t_2h1p,F) &
- matmul(matmul(t_2h1p,V_2h1p),t_2h1p) - matmul(matmul(t_2h1p,V_2p1h),t_2p1h)
! Compute residual for 2p1h sector
r_2p1h = transpose(V_2p1h) + matmul(C_2p1h,t_2p1h) - matmul(t_2p1h,F) &
- matmul(matmul(t_2p1h,V_2h1p),t_2h1p) - matmul(matmul(t_2p1h,V_2p1h),t_2p1h)
! Check convergence
Conv = max(maxval(abs(r_2h1p)),maxval(abs(r_2p1h)))
! Update amplitudes
t_2h1p(:,:) = t_2h1p(:,:) - r_2h1p(:,:)/delta_2h1p(:,:)
t_2p1h(:,:) = t_2p1h(:,:) - r_2p1h(:,:)/delta_2p1h(:,:)
! Compute quasiparticle energies
SigGW(:,:) = F(:,:) + matmul(V_2h1p,t_2h1p) + matmul(V_2p1h,t_2p1h)
call diagonalize_matrix(nOrb,SigGW,eGW)
! Renormalization factor
Z(:) = 0d0
! Dump results
write(*,'(1X,A1,1X,I3,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
'|',nSCF,'|',eGW(nO)*HaToeV,'|',eGW(nO+1)*HaToeV,'|',Conv,'|'
end do
write(*,*)'----------------------------------------------'
!------------------------------------------------------------------------
! End of SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)' CC-G0W0 calculation '
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X)') &
'|','#','|','e_HF (eV)','|','Sig_c (eV)','|','Z','|','e_QP (eV)','|'
write(*,*)'-------------------------------------------------------------------------------'
do p=nC+1,nOrb-nR
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',p,'|',eHF(p)*HaToeV,'|',(eGW(p)-eHF(p))*HaToeV,'|',Z(p),'|',eGW(p)*HaToeV,'|'
end do
write(*,*)'-------------------------------------------------------------------------------'
end subroutine

View File

@ -1,6 +1,6 @@
subroutine ufG0W0(dotest,TDA_W,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF) subroutine ufRG0W0(dotest,TDA_W,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
! Unfold G0W0 equations ! Upfolded G0W0 equations
implicit none implicit none
include 'parameters.h' include 'parameters.h'
@ -47,7 +47,7 @@ subroutine ufG0W0(dotest,TDA_W,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
double precision,allocatable :: XmY(:,:) double precision,allocatable :: XmY(:,:)
double precision,allocatable :: rho(:,:,:) double precision,allocatable :: rho(:,:,:)
logical :: verbose = .true. logical :: verbose = .false.
double precision,parameter :: cutoff1 = 0.01d0 double precision,parameter :: cutoff1 = 0.01d0
double precision,parameter :: cutoff2 = 0.01d0 double precision,parameter :: cutoff2 = 0.01d0
double precision :: eF double precision :: eF
@ -372,8 +372,8 @@ subroutine ufG0W0(dotest,TDA_W,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
write(*,*)'-------------------------------------------' write(*,*)'-------------------------------------------'
do s=1,nH do s=1,nH
if(eGW(s) < eF .and. eGW(s) > eF - window) then ! if(eGW(s) < eF .and. eGW(s) > eF - window) then
! if(Z(s) > cutoff1) then if(Z(s) > cutoff1) then
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') & write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',s,'|',eGW(s)*HaToeV,'|',Z(s),'|' '|',s,'|',eGW(s)*HaToeV,'|',Z(s),'|'
end if end if