4
1
mirror of https://github.com/pfloos/quack synced 2025-01-09 04:43:21 +01:00

remove so GT routines

This commit is contained in:
Pierre-Francois Loos 2023-07-17 22:31:28 +02:00
parent 8c0a682aed
commit 91954dba8d
6 changed files with 16 additions and 438 deletions

View File

@ -1,78 +0,0 @@
subroutine Bethe_Salpeter_Tmatrix_so(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,Om1,X1,Y1,Om2,X2,Y2,rho1,rho2, &
ERI,eT,eGT,EcBSE)
! Compute the Bethe-Salpeter excitation energies with the T-matrix kernel
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: eT(nBas)
double precision,intent(in) :: eGT(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: Om1(nVV)
double precision,intent(in) :: X1(nVV,nVV)
double precision,intent(in) :: Y1(nOO,nVV)
double precision,intent(in) :: Om2(nOO)
double precision,intent(in) :: X2(nVV,nOO)
double precision,intent(in) :: Y2(nOO,nOO)
double precision,intent(in) :: rho1(nBas,nBas,nVV)
double precision,intent(in) :: rho2(nBas,nBas,nOO)
! Local variables
integer :: ispin
double precision :: EcRPA
double precision,allocatable :: TA(:,:),TB(:,:)
double precision,allocatable :: OmBSE(:)
double precision,allocatable :: XpY_BSE(:,:)
double precision,allocatable :: XmY_BSE(:,:)
! Output variables
double precision,intent(out) :: EcBSE
! Memory allocation
allocate(TA(nS,nS),TB(nS,nS),OmBSE(nS),XpY_BSE(nS,nS),XmY_BSE(nS,nS))
!------------------!
! Compute T-matrix !
!------------------!
ispin = 4
call ppLR(ispin,.false.,nBas,nC,nO,nV,nR,nOO,nVV,1d0,eT,ERI,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
call static_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,1d0,Om1,rho1,Om2,rho2,TA)
call static_Tmatrix_B(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,1d0,Om1,rho1,Om2,rho2,TB)
!------------------!
! Singlet manifold !
!------------------!
ispin = 3
EcBSE = 0d0
! Compute BSE singlet excitation energies
call linear_response_BSE(ispin,.false.,.false.,.true.,eta,nBas,nC,nO,nV,nR,nS,1d0,eGT,ERI,TA,TB, &
EcBSE,OmBSE,XpY_BSE,XmY_BSE)
call print_excitation('BSE@GT ',ispin,nS,OmBSE)
end subroutine

View File

@ -1,80 +0,0 @@
subroutine excitation_density_Tmatrix_so(nBas,nC,nO,nV,nR,nOO,nVV,ERI,X1,Y1,rho1,X2,Y2,rho2)
! Compute excitation densities for T-matrix self-energy
implicit none
! Input variables
integer,intent(in) :: nBas,nC,nO,nV,nR,nOO,nVV
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: X1(nVV,nVV)
double precision,intent(in) :: Y1(nOO,nVV)
double precision,intent(in) :: X2(nVV,nOO)
double precision,intent(in) :: Y2(nOO,nOO)
! Local variables
integer :: j,k,l
integer :: b,c,d
integer :: p,q
integer :: ab,cd,ij,kl
double precision,external :: Kronecker_delta
! Output variables
double precision,intent(out) :: rho1(nBas,nBas,nVV)
double precision,intent(out) :: rho2(nBas,nBAs,nOO)
! Initialization
rho1(:,:,:) = 0d0
rho2(:,:,:) = 0d0
do p=nC+1,nBas-nR
do q=nC+1,nBas-nR
do ab=1,nVV
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
rho1(p,q,ab) = rho1(p,q,ab) + (ERI(p,q,c,d) - ERI(p,q,d,c))*X1(cd,ab)
end do
end do
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
rho1(p,q,ab) = rho1(p,q,ab) + (ERI(p,q,k,l) - ERI(p,q,l,k))*Y1(kl,ab)
end do
end do
end do
do ij=1,nOO
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
rho2(p,q,ij) = rho2(p,q,ij) + (ERI(p,q,c,d) - ERI(p,q,d,c))*X2(cd,ij)
end do
end do
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
rho2(p,q,ij) = rho2(p,q,ij) + (ERI(p,q,k,l) - ERI(p,q,l,k))*Y2(kl,ij)
end do
end do
end do
end do
end do
end subroutine excitation_density_Tmatrix_so

View File

@ -1,63 +0,0 @@
subroutine renormalization_factor_Tmatrix_so(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2,rho2,Z)
! Compute renormalization factor of the T-matrix self-energy
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas,nC,nO,nV,nR
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Omega1(nVV)
double precision,intent(in) :: rho1(nBas,nBas,nVV)
double precision,intent(in) :: Omega2(nOO)
double precision,intent(in) :: rho2(nBas,nBas,nOO)
! Local variables
integer :: i,j,k,l,a,b,c,d,p,cd,kl
double precision :: eps
! Output variables
double precision,intent(out) :: Z(nBas)
! Initialize
Z(:) = 0d0
!----------------------------------------------
! T-matrix renormalization factor in the spinorbital basis
!----------------------------------------------
! Occupied part of the T-matrix self-energy
do p=nC+1,nBas-nR
do i=nC+1,nO
do cd=1,nVV
eps = e(p) + e(i) - Omega1(cd)
Z(p) = Z(p) + (rho1(p,i,cd)/eps)**2
enddo
enddo
enddo
! Virtual part of the T-matrix self-energy
do p=nC+1,nBas-nR
do a=nO+1,nBas-nR
do kl=1,nOO
eps = e(p) + e(a) - Omega2(kl)
Z(p) = Z(p) + (rho2(p,a,kl)/eps)**2
enddo
enddo
enddo
! Compute renormalization factor from derivative of SigT
Z(:) = 1d0/(1d0 + Z(:))
end subroutine renormalization_factor_Tmatrix_so

View File

@ -1,63 +0,0 @@
subroutine self_energy_Tmatrix_diag_so(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2,rho2,SigT)
! Compute diagonal of the correlation part of the T-matrix self-energy
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Omega1(nVV)
double precision,intent(in) :: rho1(nBas,nBas,nVV)
double precision,intent(in) :: Omega2(nOO)
double precision,intent(in) :: rho2(nBas,nBas,nOO)
! Local variables
integer :: i,j,k,l,a,b,c,d,p,cd,kl
double precision :: eps
! Output variables
double precision,intent(out) :: SigT(nBas)
! Initialize
SigT(:) = 0d0
!----------------------------------------------
! T-matrix self-energy in the spinorbital basis
!----------------------------------------------
! Occupied part of the T-matrix self-energy
do p=nC+1,nBas-nR
do i=nC+1,nO
do cd=1,nVV
eps = e(p) + e(i) - Omega1(cd)
SigT(p) = SigT(p) + rho1(p,i,cd)**2/eps
enddo
enddo
enddo
! Virtual part of the T-matrix self-energy
do p=nC+1,nBas-nR
do a=nO+1,nBas-nR
do kl=1,nOO
eps = e(p) + e(a) - Omega2(kl)
SigT(p) = SigT(p) + rho2(p,a,kl)**2/eps
enddo
enddo
enddo
end subroutine self_energy_Tmatrix_diag_so

View File

@ -1,123 +0,0 @@
subroutine soG0T0(eta,nBas,nC,nO,nV,nR,ENuc,ERHF,ERI,eHF)
! Perform G0W0 calculation with a T-matrix self-energy (G0T0) in the spinorbital basis
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas,nC,nO,nV,nR
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
! Local variables
integer :: ispin
integer :: nOO
integer :: nVV
double precision :: EcRPA
double precision :: EcGM
double precision :: EcBSE
integer :: nBas2,nC2,nO2,nV2,nR2,nS2
double precision,allocatable :: Omega1(:)
double precision,allocatable :: X1(:,:)
double precision,allocatable :: Y1(:,:)
double precision,allocatable :: rho1(:,:,:)
double precision,allocatable :: Omega2(:)
double precision,allocatable :: X2(:,:)
double precision,allocatable :: Y2(:,:)
double precision,allocatable :: rho2(:,:,:)
double precision,allocatable :: SigT(:)
double precision,allocatable :: Z(:)
double precision,allocatable :: eG0T0(:)
double precision,allocatable :: seHF(:)
double precision,allocatable :: sERI(:,:,:,:)
! Hello world
write(*,*)
write(*,*)'************************************************'
write(*,*)'| One-shot soG0T0 calculation |'
write(*,*)'************************************************'
write(*,*)
! Define occupied and virtual spaces
nBas2 = 2*nBas
nO2 = 2*nO
nV2 = 2*nV
nC2 = 2*nC
nR2 = 2*nR
nS2 = nO2*nV2
! Spatial to spin orbitals
allocate(seHF(nBas2),sERI(nBas2,nBas2,nBas2,nBas2))
call spatial_to_spin_MO_energy(nBas,eHF,nBas2,seHF)
call spatial_to_spin_ERI(nBas,ERI,nBas2,sERI)
! Dimensions of the rr-RPA linear reponse matrices
nOO = nO2*(nO2 - 1)/2
nVV = nV2*(nV2 - 1)/2
! Memory allocation
allocate(Omega1(nVV),X1(nVV,nVV),Y1(nOO,nVV), &
Omega2(nOO),X2(nVV,nOO),Y2(nOO,nOO), &
rho1(nBas2,nBas2,nVV),rho2(nBas2,nBas2,nOO), &
eG0T0(nBas2),SigT(nBas2),Z(nBas2))
!----------------------------------------------
! Spinorbital basis
!----------------------------------------------
ispin = 4
! Compute linear response
call ppLR(ispin,.false.,nBas2,nC2,nO2,nV2,nR2,nOO,nVV,1d0,seHF,sERI,Omega1,X1,Y1,Omega2,X2,Y2,EcRPA)
call print_excitation('pp-RPA (N+2)',ispin,nVV,Omega1)
call print_excitation('pp-RPA (N-2)',ispin,nOO,Omega2)
! Compute excitation densities for the T-matrix
call excitation_density_Tmatrix_so(nBas2,nC2,nO2,nV2,nR2,nOO,nVV,sERI,X1,Y1,rho1,X2,Y2,rho2)
!----------------------------------------------
! Compute T-matrix version of the self-energy
!----------------------------------------------
call self_energy_Tmatrix_diag_so(eta,nBas2,nC2,nO2,nV2,nR2,nOO,nVV,seHF, &
Omega1,rho1,Omega2,rho2,SigT)
! Compute renormalization factor for T-matrix self-energy
call renormalization_factor_Tmatrix_so(eta,nBas2,nC2,nO2,nV2,nR2,nOO,nVV,seHF, &
Omega1,rho1,Omega2,rho2,Z)
!----------------------------------------------
! Solve the quasi-particle equation
!----------------------------------------------
eG0T0(:) = seHF(:) + Z(:)*SigT(:)
!----------------------------------------------
! Dump results
!----------------------------------------------
call print_G0T0(nBas2,nO2,seHF,ENuc,ERHF,SigT,Z,eG0T0,EcGM,EcRPA)
call Bethe_Salpeter_Tmatrix_so(eta,nBas2,nC2,nO2,nV2,nR2,nS2,nOO,nVV,Omega1,X1,Y1,Omega2,X2,Y2,rho1,rho2, &
sERI,seHF,eG0T0,EcBSE)
end subroutine soG0T0

View File

@ -1,4 +1,4 @@
subroutine ppLR(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Omega1,X1,Y1,Omega2,X2,Y2,EcRPA) subroutine ppLR(TDA,nBas,nOO,nVV,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
! Compute the p-p channel of the linear response: see Scuseria et al. JCP 139, 104113 (2013) ! Compute the p-p channel of the linear response: see Scuseria et al. JCP 139, 104113 (2013)
@ -7,18 +7,12 @@ subroutine ppLR(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Omega1,X1,Y1,Ome
! Input variables ! Input variables
integer,intent(in) :: ispin
logical,intent(in) :: TDA logical,intent(in) :: TDA
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO integer,intent(in) :: nOO
integer,intent(in) :: nVV integer,intent(in) :: nVV
double precision,intent(in) :: lambda double precision,intent(in) :: B(nVV,nOO)
double precision,intent(in) :: e(nBas) double precision,intent(in) :: C(nVV,nVV)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) double precision,intent(in) :: D(nOO,nOO)
! Local variables ! Local variables
@ -27,28 +21,24 @@ subroutine ppLR(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Omega1,X1,Y1,Ome
double precision :: trace_matrix double precision :: trace_matrix
double precision :: EcRPA1 double precision :: EcRPA1
double precision :: EcRPA2 double precision :: EcRPA2
double precision,allocatable :: B(:,:)
double precision,allocatable :: C(:,:)
double precision,allocatable :: D(:,:)
double precision,allocatable :: M(:,:) double precision,allocatable :: M(:,:)
double precision,allocatable :: Z(:,:) double precision,allocatable :: Z(:,:)
double precision,allocatable :: Omega(:) double precision,allocatable :: Om(:)
! Output variables ! Output variables
double precision,intent(out) :: Omega1(nVV) double precision,intent(out) :: Om1(nVV)
double precision,intent(out) :: X1(nVV,nVV) double precision,intent(out) :: X1(nVV,nVV)
double precision,intent(out) :: Y1(nOO,nVV) double precision,intent(out) :: Y1(nOO,nVV)
double precision,intent(out) :: Omega2(nOO) double precision,intent(out) :: Om2(nOO)
double precision,intent(out) :: X2(nVV,nOO) double precision,intent(out) :: X2(nVV,nOO)
double precision,intent(out) :: Y2(nOO,nOO) double precision,intent(out) :: Y2(nOO,nOO)
double precision,intent(out) :: EcRPA double precision,intent(out) :: EcRPA
! Memory allocation ! Memory allocation
allocate(B(nVV,nOO),C(nVV,nVV),D(nOO,nOO),M(nOO+nVV,nOO+nVV),Z(nOO+nVV,nOO+nVV),Omega(nOO+nVV)) allocate(M(nOO+nVV,nOO+nVV),Z(nOO+nVV,nOO+nVV),Om(nOO+nVV))
!write(*,*) 'nOO', nOO
!write(*,*) 'nVV', nVV
!-------------------------------------------------! !-------------------------------------------------!
! Solve the p-p eigenproblem ! ! Solve the p-p eigenproblem !
!-------------------------------------------------! !-------------------------------------------------!
@ -59,20 +49,15 @@ subroutine ppLR(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Omega1,X1,Y1,Ome
! ! ! !
!-------------------------------------------------! !-------------------------------------------------!
! Build B, C and D matrices for the pp channel
call ppLR_C(ispin,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,C)
call ppLR_D(ispin,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,D)
if(TDA) then if(TDA) then
X1(:,:) = +C(:,:) X1(:,:) = +C(:,:)
Y1(:,:) = 0d0 Y1(:,:) = 0d0
if(nVV > 0) call diagonalize_matrix(nVV,X1,Omega1) if(nVV > 0) call diagonalize_matrix(nVV,X1,Om1)
X2(:,:) = 0d0 X2(:,:) = 0d0
Y2(:,:) = -D(:,:) Y2(:,:) = -D(:,:)
if(nOO > 0) call diagonalize_matrix(nOO,Y2,Omega2) if(nOO > 0) call diagonalize_matrix(nOO,Y2,Om2)
else else
@ -90,19 +75,19 @@ subroutine ppLR(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Omega1,X1,Y1,Ome
! Diagonalize the p-p matrix ! Diagonalize the p-p matrix
if(nOO+nVV > 0) call diagonalize_general_matrix(nOO+nVV,M,Omega,Z) if(nOO+nVV > 0) call diagonalize_general_matrix(nOO+nVV,M,Om,Z)
! Split the various quantities in p-p and h-h parts ! Split the various quantities in p-p and h-h parts
call sort_ppRPA(nOO,nVV,Omega(:),Z(:,:),Omega1(:),X1(:,:),Y1(:,:),Omega2(:),X2(:,:),Y2(:,:)) call sort_ppRPA(nOO,nVV,Om(:),Z(:,:),Om1(:),X1(:,:),Y1(:,:),Om2(:),X2(:,:),Y2(:,:))
end if end if
! Compute the RPA correlation energy ! Compute the RPA correlation energy
EcRPA = 0.5d0*( sum(Omega1(:)) - sum(Omega2(:)) - trace_matrix(nVV,C(:,:)) - trace_matrix(nOO,D(:,:)) ) EcRPA = 0.5d0*( sum(Om1(:)) - sum(Om2(:)) - trace_matrix(nVV,C(:,:)) - trace_matrix(nOO,D(:,:)) )
EcRPA1 = +sum(Omega1(:)) - trace_matrix(nVV,C(:,:)) EcRPA1 = +sum(Om1(:)) - trace_matrix(nVV,C(:,:))
EcRPA2 = -sum(Omega2(:)) - trace_matrix(nOO,D(:,:)) EcRPA2 = -sum(Om2(:)) - trace_matrix(nOO,D(:,:))
if(abs(EcRPA - EcRPA1) > 1d-6 .or. abs(EcRPA - EcRPA2) > 1d-6) & if(abs(EcRPA - EcRPA1) > 1d-6 .or. abs(EcRPA - EcRPA2) > 1d-6) &
print*,'!!! Issue in pp-RPA linear reponse calculation RPA1 != RPA2 !!!' print*,'!!! Issue in pp-RPA linear reponse calculation RPA1 != RPA2 !!!'