4
1
mirror of https://github.com/pfloos/quack synced 2024-12-31 08:36:05 +01:00

GGW ppBSE dyn

This commit is contained in:
Pierre-Francois Loos 2024-09-26 14:26:52 +02:00
parent dc0f77d525
commit 88b0424cd3
5 changed files with 413 additions and 3 deletions

View File

@ -111,9 +111,9 @@ subroutine GGW_ppBSE(TDA_W,TDA,dBSE,dTDA,eta,nOrb,nC,nO,nV,nR,nS,ERI,dipole_int,
! Compute the dynamical screening at the ppBSE level !
!----------------------------------------------------!
! if(dBSE) &
! call GGW_ppBSE_dynamic_perturbation(dTDA,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,eW,eGW,ERI,dipole_int,OmRPA,rho_RPA, &
! Om1,X1,Y1,Om2,X2,Y2,KB_sta,KC_sta,KD_sta)
if(dBSE) &
call GGW_ppBSE_dynamic_perturbation(dTDA,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,eW,eGW,ERI,dipole_int,OmRPA,rho_RPA, &
Om1,X1,Y1,Om2,X2,Y2,KB_sta,KC_sta,KD_sta)
deallocate(Om1,X1,Y1,Om2,X2,Y2,Bpp,Cpp,Dpp,KB_sta,KC_sta,KD_sta)

View File

@ -0,0 +1,82 @@
subroutine GGW_ppBSE_dynamic_kernel_B(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,eGW,Om,rho,KB_dyn)
! Compute the dynamic part of the Bethe-Salpeter equation matrices
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: eGW(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
double precision,external :: Kronecker_delta
double precision :: dem,num
integer :: m
integer :: a,b,i,j
integer :: ab,ij
! Output variables
double precision,intent(out) :: KB_dyn(nVV,nOO)
! Initialization
KB_dyn(:,:) = 0d0
! Build dynamic B matrix
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
do m=1,nS
dem = eGW(j) - Om(m) - eGW(b)
num = rho(a,i,m)*rho(b,j,m)
KB_dyn(ab,ij) = KB_dyn(ab,ij) + num*dem/(dem**2 + eta**2)
dem = eGW(j) - Om(m) - eGW(a)
num = rho(b,i,m)*rho(a,j,m)
KB_dyn(ab,ij) = KB_dyn(ab,ij) - num*dem/(dem**2 + eta**2)
dem = eGW(i) - Om(m) - eGW(a)
num = rho(a,i,m)*rho(b,j,m)
KB_dyn(ab,ij) = KB_dyn(ab,ij) + num*dem/(dem**2 + eta**2)
dem = eGW(i) - Om(m) - eGW(b)
num = rho(b,i,m)*rho(a,j,m)
KB_dyn(ab,ij) = KB_dyn(ab,ij) - num*dem/(dem**2 + eta**2)
end do
end do
end do
end do
end do
end subroutine

View File

@ -0,0 +1,88 @@
subroutine GGW_ppBSE_dynamic_kernel_C(eta,nBas,nC,nO,nV,nR,nS,nVV,lambda,eGW,Om,rho,OmBSE,KC_dyn,ZC_dyn)
! Compute the dynamic part of the Bethe-Salpeter equation matrices
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: eGW(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
double precision,intent(in) :: OmBSE
! Local variables
double precision,external :: Kronecker_delta
double precision :: dem,num
integer :: m
integer :: a,b,c,d
integer :: ab,cd
! Output variables
double precision,intent(out) :: KC_dyn(nVV,nVV)
double precision,intent(out) :: ZC_dyn(nVV,nVV)
! Initialization
KC_dyn(:,:) = 0d0
ZC_dyn(:,:) = 0d0
! Build dynamic C matrix
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
do m=1,nS
dem = OmBSE - eGW(c) - Om(m) - eGW(b)
num = rho(a,c,m)*rho(b,d,m)
KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGW(c) - Om(m) - eGW(a)
num = rho(b,c,m)*rho(a,d,m)
KC_dyn(ab,cd) = KC_dyn(ab,cd) - num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGW(d) - Om(m) - eGW(a)
num = rho(a,c,m)*rho(b,d,m)
KC_dyn(ab,cd) = KC_dyn(ab,cd) + num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGW(d) - Om(m) - eGW(b)
num = rho(b,c,m)*rho(a,d,m)
KC_dyn(ab,cd) = KC_dyn(ab,cd) - num*dem/(dem**2 + eta**2)
ZC_dyn(ab,cd) = ZC_dyn(ab,cd) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
end do
end do
end do
end do
end subroutine

View File

@ -0,0 +1,88 @@
subroutine GGW_ppBSE_dynamic_kernel_D(eta,nBas,nC,nO,nV,nR,nS,nOO,lambda,eGW,Om,rho,OmBSE,KD_dyn,ZD_dyn)
! Compute the dynamic part of the Bethe-Salpeter equation matrices
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
integer,intent(in) :: nOO
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: eGW(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
double precision,intent(in) :: OmBSE
! Local variables
double precision,external :: Kronecker_delta
double precision :: dem,num
integer :: m
integer :: i,j,k,l
integer :: ij,kl
! Output variables
double precision,intent(out) :: KD_dyn(nOO,nOO)
double precision,intent(out) :: ZD_dyn(nOO,nOO)
! Initialization
KD_dyn(:,:) = 0d0
ZD_dyn(:,:) = 0d0
! Build dynamic D matrix
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
do m=1,nS
dem = OmBSE - eGW(k) + Om(m) - eGW(i)
num = rho(i,k,m)*rho(j,l,m)
KD_dyn(ij,kl) = KD_dyn(ij,kl) - num*dem/(dem**2 + eta**2)
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGW(k) + Om(m) - eGW(j)
num = rho(j,k,m)*rho(i,l,m)
KD_dyn(ij,kl) = KD_dyn(ij,kl) + num*dem/(dem**2 + eta**2)
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGW(l) + Om(m) - eGW(j)
num = rho(i,k,m)*rho(j,l,m)
KD_dyn(ij,kl) = KD_dyn(ij,kl) - num*dem/(dem**2 + eta**2)
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGW(l) + Om(m) - eGW(i)
num = rho(j,k,m)*rho(i,l,m)
KD_dyn(ij,kl) = KD_dyn(ij,kl) + num*dem/(dem**2 + eta**2)
ZD_dyn(ij,kl) = ZD_dyn(ij,kl) - num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
end do
end do
end do
end do
end subroutine

View File

@ -0,0 +1,152 @@
subroutine GGW_ppBSE_dynamic_perturbation(dTDA,eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,eW,eGW,ERI,dipole_int, &
OmRPA,rho_RPA,Om1,X1,Y1,Om2,X2,Y2,KB_sta,KC_sta,KD_sta)
! Compute dynamical effects via perturbation theory for BSE
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dTDA
double precision,intent(in) :: eta
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: eW(nOrb)
double precision,intent(in) :: eGW(nOrb)
double precision,intent(in) :: dipole_int(nOrb,nOrb,ncart)
double precision,intent(in) :: OmRPA(nS)
double precision,intent(in) :: rho_RPA(nOrb,nOrb,nS)
double precision,intent(in) :: Om1(nVV)
double precision,intent(in) :: X1(nVV,nVV)
double precision,intent(in) :: Y1(nOO,nVV)
double precision,intent(in) :: Om2(nOO)
double precision,intent(in) :: X2(nVV,nOO)
double precision,intent(in) :: Y2(nOO,nOO)
double precision,intent(in) :: KB_sta(nVV,nOO)
double precision,intent(in) :: KC_sta(nVV,nVV)
double precision,intent(in) :: KD_sta(nOO,nOO)
! Local variables
integer :: ab,ij,kl
integer :: maxOO = 10
integer :: maxVV = 0
double precision,allocatable :: Om1_dyn(:)
double precision,allocatable :: Om2_dyn(:)
double precision,allocatable :: Z1_dyn(:)
double precision,allocatable :: Z2_dyn(:)
double precision,allocatable :: KB_dyn(:,:)
double precision,allocatable :: KC_dyn(:,:)
double precision,allocatable :: KD_dyn(:,:)
double precision,allocatable :: ZC_dyn(:,:)
double precision,allocatable :: ZD_dyn(:,:)
! Memory allocation
allocate(Om1_dyn(maxVV),Om2_dyn(maxOO),Z1_dyn(maxVV),Z2_dyn(maxOO), &
KB_dyn(nVV,nOO),KC_dyn(nVV,nVV),KD_dyn(nOO,nOO), &
ZC_dyn(nVV,nVV),ZD_dyn(nOO,nOO))
if(dTDA) then
write(*,*)
write(*,*) '*** dynamical TDA activated ***'
write(*,*)
end if
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,*) ' First-order dynamical correction to static ppBSE double electron attachment energies '
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,'(2X,A5,1X,A20,1X,A20,1X,A20,1X,A20)') '#','Static (eV)','Dynamic (eV)','Correction (eV)','Renorm. (eV)'
write(*,*) '---------------------------------------------------------------------------------------------------'
do ab=1,min(nVV,maxVV)
if(dTDA) then
call GGW_ppBSE_dynamic_kernel_C(eta,nOrb,nC,nO,nV,nR,nS,nVV,1d0,eGW,OmRPA,rho_RPA,Om1(ab),KC_dyn,ZC_dyn)
Z1_dyn(ab) = + dot_product(X1(:,ab),matmul(ZC_dyn,X1(:,ab)))
Om1_dyn(ab) = + dot_product(X1(:,ab),matmul(KC_dyn - KC_sta,X1(:,ab)))
else
call GGW_ppBSE_dynamic_kernel_B(eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,1d0,eGW,OmRPA,rho_RPA,KB_dyn)
call GGW_ppBSE_dynamic_kernel_C(eta,nOrb,nC,nO,nV,nR,nS,nVV,1d0,eGW,OmRPA,rho_RPA,Om1(ab),KC_dyn,ZC_dyn)
call GGW_ppBSE_dynamic_kernel_D(eta,nOrb,nC,nO,nV,nR,nS,nOO,1d0,eGW,OmRPA,rho_RPA,Om1(ab),KD_dyn,ZD_dyn)
Z1_dyn(ab) = dot_product(X1(:,ab),matmul(ZC_dyn,X1(:,ab))) &
+ dot_product(Y1(:,ab),matmul(ZD_dyn,Y1(:,ab)))
Om1_dyn(ab) = dot_product(X1(:,ab),matmul(KC_dyn - KC_sta,X1(:,ab))) &
- dot_product(Y1(:,ab),matmul(KD_dyn - KD_sta,Y1(:,ab))) &
+ dot_product(X1(:,ab),matmul(KB_dyn - KB_sta,Y1(:,ab))) &
- dot_product(Y1(:,ab),matmul(transpose(KB_dyn - KB_sta),X1(:,ab)))
end if
Z1_dyn(ab) = 1d0/(1d0 - Z1_dyn(ab))
Om1_dyn(ab) = Z1_dyn(ab)*Om1_dyn(ab)
write(*,'(2X,I5,5X,F15.6,5X,F15.6,5X,F15.6,5X,F15.6)') &
ab,Om1(ab)*HaToeV,(Om1(ab)+Om1_dyn(ab))*HaToeV,Om1_dyn(ab)*HaToeV,Z1_dyn(ab)
end do
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,*)
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,*) ' First-order dynamical correction to static ppBSE double electron detachment energies '
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,'(2X,A5,1X,A20,1X,A20,1X,A20,1X,A20)') '#','Static (eV)','Dynamic (eV)','Correction (eV)','Renorm. (eV)'
write(*,*) '---------------------------------------------------------------------------------------------------'
kl = 0
do ij=nOO,max(1,nOO+1-maxOO),-1
kl = kl + 1
if(dTDA) then
call GGW_ppBSE_dynamic_kernel_D(eta,nOrb,nC,nO,nV,nR,nS,nOO,1d0,eGW,OmRPA,rho_RPA,Om2(ij),KD_dyn,ZD_dyn)
Z2_dyn(kl) = - dot_product(Y2(:,ij),matmul(ZD_dyn,Y2(:,ij)))
Om2_dyn(kl) = - dot_product(Y2(:,ij),matmul(KD_dyn - KD_sta,Y2(:,ij)))
else
call GGW_ppBSE_dynamic_kernel_B(eta,nOrb,nC,nO,nV,nR,nS,nOO,nVV,1d0,eGW,OmRPA,rho_RPA,KB_dyn)
call GGW_ppBSE_dynamic_kernel_C(eta,nOrb,nC,nO,nV,nR,nS,nVV,1d0,eGW,OmRPA,rho_RPA,Om2(ij),KC_dyn,ZC_dyn)
call GGW_ppBSE_dynamic_kernel_D(eta,nOrb,nC,nO,nV,nR,nS,nOO,1d0,eGW,OmRPA,rho_RPA,Om2(ij),KD_dyn,ZD_dyn)
Z2_dyn(kl) = dot_product(X2(:,ij),matmul(ZC_dyn,X2(:,ij))) &
+ dot_product(Y2(:,ij),matmul(ZD_dyn,Y2(:,ij)))
Om2_dyn(kl) = dot_product(X2(:,ij),matmul(KC_dyn - KC_sta,X2(:,ij))) &
- dot_product(Y2(:,ij),matmul(KD_dyn - KD_sta,Y2(:,ij))) &
+ dot_product(X2(:,ij),matmul(KB_dyn - KB_sta,Y2(:,ij))) &
- dot_product(Y2(:,ij),matmul(transpose(KB_dyn - KB_sta),X2(:,ij)))
end if
Z2_dyn(kl) = 1d0/(1d0 - Z2_dyn(kl))
Om2_dyn(kl) = Z2_dyn(kl)*Om2_dyn(kl)
write(*,'(2X,I5,5X,F15.6,5X,F15.6,5X,F15.6,5X,F15.6)') &
kl,Om2(ij)*HaToeV,(Om2(ij)+Om2_dyn(kl))*HaToeV,Om2_dyn(kl)*HaToeV,Z2_dyn(kl)
end do
write(*,*) '---------------------------------------------------------------------------------------------------'
write(*,*)
end subroutine