mirror of
https://github.com/pfloos/quack
synced 2024-12-22 04:14:26 +01:00
inital commit for quack
This commit is contained in:
parent
b484fce849
commit
86964672d7
18
GoDuck
Executable file
18
GoDuck
Executable file
@ -0,0 +1,18 @@
|
||||
#! /bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
if [ $# -ne 2 ]
|
||||
then
|
||||
echo "You need two arguments [Molecule] [Basis] !!"
|
||||
fi
|
||||
|
||||
if [ $# = 2 ]
|
||||
then
|
||||
cp examples/molecule."$1" input/molecule
|
||||
cp examples/basis."$1"."$2" input/basis
|
||||
cp examples/basis."$1"."$2" input/weight
|
||||
./bin/IntPak
|
||||
./bin/MCQC
|
||||
fi
|
||||
|
17
GoSph
Executable file
17
GoSph
Executable file
@ -0,0 +1,17 @@
|
||||
#! /bin/bash
|
||||
|
||||
if [ $# -ne 1 ]
|
||||
then
|
||||
echo "You need one argument [BasisSetSize] !!"
|
||||
fi
|
||||
|
||||
if [ $# = 1 ]
|
||||
then
|
||||
cp examples/molecule.Sph input/molecule
|
||||
cp examples/basis.Sph.Ylm"$1" input/basis
|
||||
cp int/Sph_ERI_"$1".dat int/ERI.dat
|
||||
cp int/Sph_Kin_"$1".dat int/Kin.dat
|
||||
cp int/Sph_Nuc_"$1".dat int/Nuc.dat
|
||||
cp int/Sph_Ov_"$1".dat int/Ov.dat
|
||||
./bin/MCQC
|
||||
fi
|
321
PyDuck
Executable file
321
PyDuck
Executable file
@ -0,0 +1,321 @@
|
||||
#!/usr/bin/env python2
|
||||
import sys
|
||||
from termcolor import colored
|
||||
import shlex
|
||||
from subprocess import Popen, PIPE
|
||||
import itertools
|
||||
import re
|
||||
import numpy as np
|
||||
import os
|
||||
from shutil import copy2
|
||||
import matplotlib.pyplot as plt
|
||||
import json
|
||||
from math import *
|
||||
from collections import OrderedDict
|
||||
import csv
|
||||
import argparse
|
||||
def GetDuckDir():
|
||||
return os.path.dirname(os.path.realpath(__file__))
|
||||
|
||||
def nNucl(molbaselines):
|
||||
return float(molbaselines[1].split()[0])
|
||||
|
||||
def isMononucle(molbaselines):
|
||||
return nNucl(molbaselines)==1
|
||||
|
||||
def openfileindir(path,readwrite):
|
||||
mydir=os.path.dirname(path)
|
||||
if not os.path.exists(mydir) and mydir!="":
|
||||
os.makedirs(mydir)
|
||||
return open(path,readwrite)
|
||||
def outfile(Outdic,item,index=None):
|
||||
itemdata=Outdic[item]
|
||||
if itemdata["Enabled"]:
|
||||
fmt=itemdata["Format"]
|
||||
if index is not None:
|
||||
filename=fmt.format(index)
|
||||
else:
|
||||
filename=fmt
|
||||
if "Parent" in Outdic:
|
||||
path=os.path.join(Outdic["Parent"],filename)
|
||||
else:
|
||||
path=filename
|
||||
return openfileindir(path,'w')
|
||||
else:
|
||||
return
|
||||
|
||||
def runDuck(mol,basis,x,molbaselines,molbase,basisbase):
|
||||
#gennerate molecule file
|
||||
currdir=os.getcwd()
|
||||
os.chdir(GetDuckDir())
|
||||
molname='.'.join([mol,str(x)])
|
||||
lstw=list()
|
||||
for i,line in enumerate(molbaselines):
|
||||
if i<3:
|
||||
lstw.append(line)
|
||||
else:
|
||||
if isMononucle(molbaselines):
|
||||
if i==3:
|
||||
lstw.append(' '.join([str(x)]+line.split()[1:]))
|
||||
else:
|
||||
v=[float(abs(x))/float(2),float(-abs(x)/float(2))]
|
||||
val=v[i-3]
|
||||
lstw.append(' '.join([line.split()[0],'0.','0.',str(val)]))
|
||||
junkfiles=list()
|
||||
with open(molbase+molname,'w') as n:
|
||||
junkfiles.append(n.name)
|
||||
n.write(os.linesep.join(lstw))
|
||||
#Copy basis
|
||||
basisfile=basisbase+'.'.join([mol,basis])
|
||||
newbasisfile=basisbase+'.'.join([molname,basis])
|
||||
copy2(basisfile,newbasisfile)
|
||||
junkfiles.append(newbasisfile)
|
||||
#start child process Goduck
|
||||
cmd=" ".join(["./GoDuck",molname, basis])
|
||||
Duck=Popen(shlex.split(cmd),stdout=PIPE)
|
||||
(DuckOut, DuckErr) = Duck.communicate()
|
||||
excode=Duck.wait()
|
||||
for junk in junkfiles:
|
||||
os.remove(junk)
|
||||
os.chdir(currdir)
|
||||
return (excode,DuckOut,DuckErr)
|
||||
|
||||
def addvalue(dic,key,x,y):
|
||||
if key not in dic:
|
||||
dic[key]=list()
|
||||
dic[key].append(y)
|
||||
print(key)
|
||||
print(x,y)
|
||||
|
||||
def main(mol):
|
||||
#get basepath for files
|
||||
molbase='examples/molecule.'
|
||||
basisbase=molbase.replace('molecule','basis')
|
||||
with open('PyOptions.json','r') as jfile:
|
||||
options=json.loads(jfile.read())
|
||||
basis=str(options['Basis'])
|
||||
#Get mehtod to analyse
|
||||
methodsdic=options['Methods']
|
||||
#Get datas to analyse in this method
|
||||
scandic=options['Scan']
|
||||
scan=np.arange(scandic['Start'],scandic['Stop']+scandic['Step'],scandic['Step'])
|
||||
print(scan)
|
||||
mymethods=dict()
|
||||
alllabels=list()
|
||||
for method,methoddatas in methodsdic.iteritems():
|
||||
if methoddatas['Enabled']:
|
||||
mymethods[method]=methoddatas
|
||||
for label,labeldatas in methoddatas['Labels'].iteritems():
|
||||
if type(labeldatas) is dict:
|
||||
enabled=labeldatas['Enabled']
|
||||
else:
|
||||
enabled=labeldatas
|
||||
if enabled and label not in alllabels:
|
||||
alllabels.append(label)
|
||||
graphdic=dict()
|
||||
errorconvstring="Convergence failed"
|
||||
with open(os.path.join(GetDuckDir(),molbase+mol),'r') as b:
|
||||
molbaselines=b.read().splitlines()
|
||||
if isMononucle(molbaselines):
|
||||
print('monoatomic system: variation of the nuclear charge')
|
||||
else:
|
||||
print('polyatomic system: variation is on the distance')
|
||||
for x in scan:
|
||||
(DuckExit,DuckOut,DuckErr)=runDuck(mol,basis,x,molbaselines,molbase,basisbase)
|
||||
#print DuckOut on file or not
|
||||
if "Outputs" in options:
|
||||
outdat=options["Outputs"]
|
||||
if 'DuckOutput' in outdat:
|
||||
outopt=outdat["DuckOutput"]
|
||||
if outopt['Enabled']:
|
||||
if outopt['Multiple']:
|
||||
duckoutf=outfile(outopt,"DuckOutput",x)
|
||||
else:
|
||||
if x==scan[0]:
|
||||
duckoutf=outfile(outdat,"DuckOutput")
|
||||
duckoutf.write('Z' if isMononucle(molbaselines) else 'Distance'+' '+str(x)+os.linesep+os.linesep)
|
||||
duckoutf.write(DuckOut)
|
||||
if outopt['Multiple']:
|
||||
duckoutf.close()
|
||||
print("GoDuk exit code " + str(DuckExit))
|
||||
if DuckExit !=0:
|
||||
#if GoDuck is not happy
|
||||
print(DuckErr)
|
||||
sys.exit(-1)
|
||||
#get all data for the method
|
||||
for method,methoddatas in mymethods.iteritems():
|
||||
isnan=False
|
||||
if '{0}' in method:
|
||||
if "index" in methoddatas:
|
||||
methodheaders=[method.format(str(x)) for x in methoddatas['Index']]
|
||||
else:
|
||||
try:
|
||||
print(method)
|
||||
reglist=re.findall('(\d+)'.join([re.escape(s) for s in method.split('{0}')]),DuckOut)
|
||||
print(reglist)
|
||||
final=max([(int(i[0]) if type(i) is tuple else int(i)) for i in reglist])
|
||||
print(final)
|
||||
methodheaders=[method.format(str(final))]
|
||||
except:
|
||||
isnan=True
|
||||
methodheaders=[None]
|
||||
method=method.replace('{0}','')
|
||||
else:
|
||||
methodheaders=list([method])
|
||||
for methodheader in methodheaders:
|
||||
if len(methodheaders)!=1:
|
||||
method=methodheader
|
||||
lbldic=methoddatas['Labels']
|
||||
print(methodheader)
|
||||
if methodheader is None:
|
||||
methodtxt=''
|
||||
else:
|
||||
it=itertools.dropwhile(lambda line: methodheader + ' calculation' not in line , DuckOut.splitlines())
|
||||
it=itertools.takewhile(lambda line: 'Total CPU time for ' not in line, it)
|
||||
methodtxt=os.linesep.join(it)
|
||||
if errorconvstring in methodtxt:
|
||||
print(colored(' '.join([method, errorconvstring, '!!!!!']),'red'))
|
||||
isnan=True
|
||||
if methodtxt=='':
|
||||
print(colored('No data' +os.linesep+ 'RHF scf not converged or method not enabled','red'))
|
||||
isnan=True
|
||||
#find the expected values
|
||||
for label,labeldatas in lbldic.iteritems():
|
||||
if type(labeldatas) is dict:
|
||||
indexed=('Index' in labeldatas)
|
||||
enabled=labeldatas['Enabled']
|
||||
graph=labeldatas['Graph'] if 'Graph' in labeldatas else 1
|
||||
else:
|
||||
enabled=labeldatas
|
||||
graph=1
|
||||
indexed=False
|
||||
if enabled:
|
||||
if graph not in graphdic:
|
||||
graphdic[graph]=OrderedDict()
|
||||
y=graphdic[graph]
|
||||
if not indexed:
|
||||
v=np.nan
|
||||
print(method)
|
||||
print(label)
|
||||
if not isnan:
|
||||
try:
|
||||
m=re.search('\s+'.join([re.escape(w) for w in label.split()]) + "\s+(?:"+re.escape("(eV):")+"\s+)?(?:=\s+)?(-?\d+.?\d*)",methodtxt)
|
||||
v=m.group(1)
|
||||
except:
|
||||
v=np.nan
|
||||
addvalue(y,(method,label),x,v)
|
||||
else:
|
||||
startindex=-1
|
||||
columnindex=-1
|
||||
linedtxt=methodtxt.split(os.linesep)
|
||||
for n,line in enumerate(linedtxt):
|
||||
if all(x in line for x in ['|',' '+label+' ','#']):
|
||||
startindex=n+2
|
||||
columnindex=[s.strip() for s in line.split('|')].index(label)
|
||||
break
|
||||
with open(os.path.join(GetDuckDir(),'input','molecule'),'r') as molfile:
|
||||
molfile.readline()
|
||||
line=molfile.readline()
|
||||
nel=int(line.split()[1])
|
||||
print(nel)
|
||||
HOMO=int(nel/2)
|
||||
HO=HOMO
|
||||
LUMO=HOMO+1
|
||||
BV=LUMO
|
||||
for i in labeldatas['Index']:
|
||||
v=np.nan
|
||||
if type(i) is str or type(i) is unicode:
|
||||
ival=eval(i)
|
||||
if type(ival) is not int:
|
||||
print('Index '+ str(i) + 'must be integer')
|
||||
sys.exit(-2)
|
||||
else:
|
||||
ival=i
|
||||
v=np.nan
|
||||
if not isnan:
|
||||
try:
|
||||
if startindex!=-1 and columnindex!=-1:
|
||||
line=linedtxt[startindex+ival-1]
|
||||
v=float(line.split('|')[columnindex].split()[0])
|
||||
print(method)
|
||||
print(label)
|
||||
print(i)
|
||||
else:
|
||||
v=np.nan
|
||||
except:
|
||||
v=np.nan
|
||||
key=(method,label,i)
|
||||
addvalue(y,key,x,v)
|
||||
tpl=(x,scan.tolist().index(x)+1,len(y[key]))
|
||||
print(tpl)
|
||||
if tpl[1]-tpl[2]:
|
||||
sys.exit()
|
||||
#define graph grid
|
||||
maxgraph=max(graphdic.keys())
|
||||
maxrow=int(round(sqrt(maxgraph)))
|
||||
maxcol=int(ceil(float(maxgraph)/float(maxrow)))
|
||||
#define label ls
|
||||
for graph,y in graphdic.iteritems():
|
||||
datas=list()
|
||||
datas.append(["#x"]+scan.tolist())
|
||||
if len(y.keys())!=0:
|
||||
plt.subplot(maxrow,maxcol,graph)
|
||||
plt.xlabel('Z' if isMononucle(molbaselines) else 'Distance '+mol)
|
||||
ylbls=list([basis])
|
||||
for i in range(0,2):
|
||||
lst=list(set([key[i] for key in y.keys()]))
|
||||
if len(lst)==1:
|
||||
ylbls.append(lst[0])
|
||||
plt.ylabel(' '.join(ylbls))
|
||||
print('Legend')
|
||||
print(list(y.keys()))
|
||||
for key,values in y.iteritems():
|
||||
legend=list()
|
||||
for el in key[0:2]:
|
||||
if el not in ylbls:
|
||||
legend.append(el)
|
||||
if len(key)>2:
|
||||
legend.append(str(key[2]))
|
||||
#plot curves
|
||||
lbl=' '.join(legend)
|
||||
plt.plot(scan,y[key],'-o',label=lbl)
|
||||
#print("min",x[y.index(min(y))]/2)
|
||||
#generate legends
|
||||
plt.legend()
|
||||
dataout=False
|
||||
if "Outputs" in options:
|
||||
outputs=options['Outputs']
|
||||
if "DataOutput" in outputs:
|
||||
DataOutput=outputs['DataOutput']
|
||||
dataout=DataOutput['Enabled']
|
||||
if dataout:
|
||||
fmtlegendf='{0}({1})'
|
||||
datas.append([fmtlegendf.format("y",lbl)]+y[key])
|
||||
if dataout:
|
||||
csvdatas=zip(*datas)
|
||||
with outfile(outputs,"DataOutput",graph) as csvf:
|
||||
writer = csv.writer(csvf, delimiter=' ')
|
||||
writer.writerow(['#']+ylbls)
|
||||
writer.writerows(csvdatas)
|
||||
#show graph
|
||||
if "Outputs" in options:
|
||||
outputs=options['Outputs']
|
||||
if "FigureOutput" in outputs:
|
||||
figout=outputs["FigureOutput"]
|
||||
if figout["Enabled"]:
|
||||
plt.savefig(figout['Path'])
|
||||
plt.show()
|
||||
if __name__ == '__main__':
|
||||
parser=argparse.ArgumentParser()
|
||||
parser.add_argument("mol",nargs='?', help="molecule to compute",type=str)
|
||||
parser.add_argument("-c,--copy", help="Copy sample option file",action="store_true",dest="copy")
|
||||
args = parser.parse_args()
|
||||
if len(sys.argv)==1:
|
||||
parser.print_help()
|
||||
else:
|
||||
if args.copy:
|
||||
copy2(os.path.join(GetDuckDir(),"PyOptions.template.json"),"PyOptions.json")
|
||||
if args.mol is not None:
|
||||
os.system("vim PyOptions.json")
|
||||
if args.mol is not None:
|
||||
main(args.mol)
|
145
PyOptions.json
Normal file
145
PyOptions.json
Normal file
@ -0,0 +1,145 @@
|
||||
{
|
||||
"Scan": {
|
||||
"Start":0.8,
|
||||
"Stop":1.2,
|
||||
"Step":0.01
|
||||
},
|
||||
"Basis":"6-31G",
|
||||
"Outputs": {
|
||||
"DataOutput": {
|
||||
"Enabled":true,
|
||||
"Format":"Duck{0}.dat"
|
||||
},
|
||||
"DuckOutput": {
|
||||
"Enabled":true,
|
||||
"Multiple":false,
|
||||
"Format":"DuckOut.out"
|
||||
},
|
||||
"FigureOutput":{
|
||||
"Enabled":false,
|
||||
"Path":"Figure.png"
|
||||
}
|
||||
},
|
||||
"Methods": {
|
||||
"RHF":{
|
||||
"Enabled": true,
|
||||
"Labels": {
|
||||
"One-electron energy":false,
|
||||
"Kinetic energy":false,
|
||||
"Potential energy":false,
|
||||
"Two-electron energy":false,
|
||||
"Coulomb energy":false,
|
||||
"Exchange energy":false,
|
||||
"Electronic energy":false,
|
||||
"Nuclear repulsion":false,
|
||||
"Hartree-Fock energy":true,
|
||||
"HF HOMO energy":false,
|
||||
"HF LUMO energy":false,
|
||||
"HF HOMO-LUMO gap":false
|
||||
}
|
||||
},
|
||||
"One-shot G0W0": {
|
||||
"Enabled": true,
|
||||
"Labels": {
|
||||
"G0W0 HOMO energy":true,
|
||||
"G0W0 LUMO energy":true,
|
||||
"G0W0 HOMO-LUMO gap":false,
|
||||
"G0W0 total energy":false,
|
||||
"RPA correlation energy" :false,
|
||||
"Z": {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":1
|
||||
},
|
||||
"Sigma_c (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":2
|
||||
},
|
||||
"e_QP (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO+1","LUMO+2"],
|
||||
"Graph":3
|
||||
},
|
||||
"e_HF (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":4
|
||||
}
|
||||
}
|
||||
},
|
||||
"Self-consistent evG{0}W{0}": {
|
||||
"Enabled":false,
|
||||
"Labels": {
|
||||
"evGW HOMO energy":false,
|
||||
"evGW LUMO energy":false,
|
||||
"evGW HOMO-LUMO gap":false,
|
||||
"evGW total energy":false,
|
||||
"RPA correlation energy" :false,
|
||||
"Z": {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":1
|
||||
},
|
||||
"Sigma_c (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":2
|
||||
},
|
||||
"e_QP (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":3
|
||||
},
|
||||
"e_HF (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":4
|
||||
}
|
||||
}
|
||||
},
|
||||
"Self-consistent qsG{0}W{0}": {
|
||||
"Enabled": false,
|
||||
"Labels": {
|
||||
"qsGW HOMO energy":false,
|
||||
"qsGW LUMO energy":false,
|
||||
"qsGW HOMO-LUMO gap":false,
|
||||
"qsGW total energy":false,
|
||||
"qsGW exchange energy":false,
|
||||
"qsGW correlation energy":false,
|
||||
"RPA correlation energy":{
|
||||
"Enabled":false,
|
||||
"Graph":2
|
||||
},
|
||||
"Z": {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":4
|
||||
},
|
||||
"e_QP-e_HF (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":5
|
||||
},
|
||||
"e_QP (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":6
|
||||
}
|
||||
}
|
||||
},
|
||||
"MP2": {
|
||||
"Enabled": false,
|
||||
"Labels": {
|
||||
"MP2 correlation energy": {
|
||||
"Enabled":true,
|
||||
"Graph":4
|
||||
},
|
||||
"Direct part":false,
|
||||
"Exchange part":false,
|
||||
"MP2 total energy":true,
|
||||
"MP2 energy":false
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
145
PyOptions.template.json
Normal file
145
PyOptions.template.json
Normal file
@ -0,0 +1,145 @@
|
||||
{
|
||||
"Scan": {
|
||||
"Start":0.8,
|
||||
"Stop":1.2,
|
||||
"Step":0.01
|
||||
},
|
||||
"Basis":"6-31G",
|
||||
"Outputs": {
|
||||
"DataOutput": {
|
||||
"Enabled":true,
|
||||
"Format":"Duck{0}.dat"
|
||||
},
|
||||
"DuckOutput": {
|
||||
"Enabled":true,
|
||||
"Multiple":false,
|
||||
"Format":"DuckOut.out"
|
||||
},
|
||||
"FigureOutput":{
|
||||
"Enabled":false,
|
||||
"Path":"Figure.png"
|
||||
}
|
||||
},
|
||||
"Methods": {
|
||||
"RHF":{
|
||||
"Enabled": true,
|
||||
"Labels": {
|
||||
"One-electron energy":false,
|
||||
"Kinetic energy":false,
|
||||
"Potential energy":false,
|
||||
"Two-electron energy":false,
|
||||
"Coulomb energy":false,
|
||||
"Exchange energy":false,
|
||||
"Electronic energy":false,
|
||||
"Nuclear repulsion":false,
|
||||
"Hartree-Fock energy":true,
|
||||
"HF HOMO energy":false,
|
||||
"HF LUMO energy":false,
|
||||
"HF HOMO-LUMO gap":false
|
||||
}
|
||||
},
|
||||
"One-shot G0W0": {
|
||||
"Enabled": true,
|
||||
"Labels": {
|
||||
"G0W0 HOMO energy":true,
|
||||
"G0W0 LUMO energy":true,
|
||||
"G0W0 HOMO-LUMO gap":false,
|
||||
"G0W0 total energy":false,
|
||||
"RPA correlation energy" :false,
|
||||
"Z": {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":1
|
||||
},
|
||||
"Sigma_c (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":2
|
||||
},
|
||||
"e_QP (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO+1","LUMO+2"],
|
||||
"Graph":3
|
||||
},
|
||||
"e_HF (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":4
|
||||
}
|
||||
}
|
||||
},
|
||||
"Self-consistent evG{0}W{0}": {
|
||||
"Enabled":false,
|
||||
"Labels": {
|
||||
"evGW HOMO energy":false,
|
||||
"evGW LUMO energy":false,
|
||||
"evGW HOMO-LUMO gap":false,
|
||||
"evGW total energy":false,
|
||||
"RPA correlation energy" :false,
|
||||
"Z": {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":1
|
||||
},
|
||||
"Sigma_c (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":2
|
||||
},
|
||||
"e_QP (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":3
|
||||
},
|
||||
"e_HF (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":4
|
||||
}
|
||||
}
|
||||
},
|
||||
"Self-consistent qsG{0}W{0}": {
|
||||
"Enabled": false,
|
||||
"Labels": {
|
||||
"qsGW HOMO energy":false,
|
||||
"qsGW LUMO energy":false,
|
||||
"qsGW HOMO-LUMO gap":false,
|
||||
"qsGW total energy":false,
|
||||
"qsGW exchange energy":false,
|
||||
"qsGW correlation energy":false,
|
||||
"RPA correlation energy":{
|
||||
"Enabled":false,
|
||||
"Graph":2
|
||||
},
|
||||
"Z": {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":4
|
||||
},
|
||||
"e_QP-e_HF (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":5
|
||||
},
|
||||
"e_QP (eV)" : {
|
||||
"Enabled":true,
|
||||
"Index":["HOMO","LUMO","LUMO+1","LUMO+2"],
|
||||
"Graph":6
|
||||
}
|
||||
}
|
||||
},
|
||||
"MP2": {
|
||||
"Enabled": false,
|
||||
"Labels": {
|
||||
"MP2 correlation energy": {
|
||||
"Enabled":true,
|
||||
"Graph":4
|
||||
},
|
||||
"Direct part":false,
|
||||
"Exchange part":false,
|
||||
"MP2 total energy":true,
|
||||
"MP2 energy":false
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
12
include/parameters.h
Normal file
12
include/parameters.h
Normal file
@ -0,0 +1,12 @@
|
||||
integer,parameter :: nspin = 2
|
||||
integer,parameter :: maxShell = 50
|
||||
integer,parameter :: n1eInt = 3
|
||||
integer,parameter :: n2eInt = 4
|
||||
integer,parameter :: n3eInt = 3
|
||||
integer,parameter :: n4eInt = 3
|
||||
integer,parameter :: maxK = 20
|
||||
|
||||
double precision,parameter :: pi = acos(-1d0)
|
||||
double precision,parameter :: HaToeV = 27.21138602d0
|
||||
double precision,parameter :: pmtoau = 0.0188973d0
|
||||
|
17
include/quadrature.h
Normal file
17
include/quadrature.h
Normal file
@ -0,0 +1,17 @@
|
||||
|
||||
! Gauss-Legendre quadrature roots and weights
|
||||
|
||||
integer,parameter :: nQuad = 21
|
||||
double precision, save :: rQuad(1:nQuad) = &
|
||||
(/ 0.00312391468981d0 , 0.0163865807168d0 , 0.0399503329248d0 , 0.0733183177083d0 , 0.115780018262d0 , &
|
||||
0.166430597901d0 , 0.224190582056d0 , 0.287828939896d0 , 0.355989341599d0 , 0.42721907292d0 , &
|
||||
0.5d0 , 0.57278092708d0 , 0.644010658401d0 , 0.712171060104d0 , 0.775809417944d0 , &
|
||||
0.833569402099d0 , 0.884219981738d0 , 0.926681682292d0 , 0.960049667075d0 , 0.983613419283d0 , &
|
||||
0.99687608531d0 /)
|
||||
double precision, save :: wQuad(1:nQuad) = &
|
||||
(/ 0.0080086141288872d0, 0.018476894885426d0, 0.028567212713429d0, 0.03805005681419d0 , 0.046722211728017d0, &
|
||||
0.054398649583574d0 , 0.060915708026864d0, 0.066134469316669d0, 0.069943697395537d0, 0.072262201994985d0, &
|
||||
0.07304056682485d0 , 0.072262201994985d0, 0.069943697395537d0, 0.066134469316669d0, 0.060915708026864d0, &
|
||||
0.054398649583574d0 , 0.046722211728017d0, 0.03805005681419d0 , 0.028567212713429d0, 0.018476894885426d0, &
|
||||
0.0080086141288872d0 /)
|
||||
|
3
input/auxbasis
Normal file
3
input/auxbasis
Normal file
@ -0,0 +1,3 @@
|
||||
1 0
|
||||
2 0
|
||||
3 0
|
14
input/basis
Normal file
14
input/basis
Normal file
@ -0,0 +1,14 @@
|
||||
1 2
|
||||
S 3 1.00
|
||||
18.7311370 0.03349460
|
||||
2.8253937 0.23472695
|
||||
0.6401217 0.81375733
|
||||
S 1 1.00
|
||||
0.1612778 1.0000000
|
||||
2 2
|
||||
S 3 1.00
|
||||
18.7311370 0.03349460
|
||||
2.8253937 0.23472695
|
||||
0.6401217 0.81375733
|
||||
S 1 1.00
|
||||
0.1612778 1.0000000
|
1
input/geminal
Normal file
1
input/geminal
Normal file
@ -0,0 +1 @@
|
||||
1.0
|
13
input/methods
Normal file
13
input/methods
Normal file
@ -0,0 +1,13 @@
|
||||
# HF MOM
|
||||
T F
|
||||
# MP2 MP3
|
||||
F F
|
||||
# CIS TDHF ADC
|
||||
F F F
|
||||
# GF2 GF3
|
||||
F F
|
||||
# G0W0 evGW qsGW
|
||||
T F F
|
||||
# MCMP2
|
||||
F
|
||||
|
5
input/molecule
Normal file
5
input/molecule
Normal file
@ -0,0 +1,5 @@
|
||||
# nAt nEl nCore nRyd
|
||||
2 2 0 0
|
||||
# Znuc x y z
|
||||
1. 0. 0. 0.4
|
||||
1. 0. 0. -0.4
|
12
input/options
Normal file
12
input/options
Normal file
@ -0,0 +1,12 @@
|
||||
# RHF: maxSCF thresh DIIS n_diis guess_type ortho_type
|
||||
32 0.0000001 T 5 1 1
|
||||
# MPn:
|
||||
|
||||
# CIS/TDHF: singlet triplet
|
||||
T F
|
||||
# GF: maxSCF thresh DIIS n_diis renormalization
|
||||
64 0.00001 T 5 3
|
||||
# GW: maxSCF thresh DIIS n_diis COHSEX SOSEX BSE TDA G0W GW0 linearize
|
||||
64 0.00001 T 15 F F F F F F F
|
||||
# MCMP2: nMC nEq nWalk dt nPrint iSeed doDrift
|
||||
1000000 100000 10 0.3 10000 1234 T
|
14
input/weight
Normal file
14
input/weight
Normal file
@ -0,0 +1,14 @@
|
||||
1 2
|
||||
S 3 1.00
|
||||
18.7311370 0.03349460
|
||||
2.8253937 0.23472695
|
||||
0.6401217 0.81375733
|
||||
S 1 1.00
|
||||
0.1612778 1.0000000
|
||||
2 2
|
||||
S 3 1.00
|
||||
18.7311370 0.03349460
|
||||
2.8253937 0.23472695
|
||||
0.6401217 0.81375733
|
||||
S 1 1.00
|
||||
0.1612778 1.0000000
|
BIN
src/.DS_Store
vendored
Normal file
BIN
src/.DS_Store
vendored
Normal file
Binary file not shown.
47
src/IntPak/CalcBoysF.f90
Normal file
47
src/IntPak/CalcBoysF.f90
Normal file
@ -0,0 +1,47 @@
|
||||
!module c_functions
|
||||
! use iso_c_binding
|
||||
! interface
|
||||
! function gsl_sf_gamma_inc_P(a,t) bind(C, name="gsl_sf_gamma_inc_P")
|
||||
! use iso_c_binding, only: c_double
|
||||
! real(kind=c_double), value :: a,t
|
||||
! real(kind=c_double) :: gsl_sf_gamma_inc_P
|
||||
! end function gsl_sf_gamma_inc_P
|
||||
! end interface
|
||||
!end module
|
||||
|
||||
subroutine CalcBoysF(maxm,t,Fm)
|
||||
! use c_functions
|
||||
! Comute the generalized Boys function Fm(t) using Slatec library
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: t
|
||||
integer,intent(in) :: maxm
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: m
|
||||
double precision :: dm
|
||||
double precision :: dgami
|
||||
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(inout):: Fm(0:maxm)
|
||||
|
||||
if(t == 0d0) then
|
||||
do m=0,maxm
|
||||
dm = dble(m)
|
||||
Fm(m) = 1d0/(2d0*dm+1d0)
|
||||
enddo
|
||||
else
|
||||
do m=0,maxm
|
||||
dm = dble(m)
|
||||
! Fm(m) = gamma(dm+0.5d0)*gsl_sf_gamma_inc_P(dm+0.5d0,t)/(2d0*t**(dm+0.5d0))
|
||||
Fm(m) = dgami(dm+0.5d0,t)/(2d0*t**(dm+0.5d0))
|
||||
enddo
|
||||
endif
|
||||
|
||||
end subroutine CalcBoysF
|
28
src/IntPak/CalcNBasis.f90
Normal file
28
src/IntPak/CalcNBasis.f90
Normal file
@ -0,0 +1,28 @@
|
||||
subroutine CalcNBasis(nShell,atot,NBasis)
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nShell
|
||||
integer,intent(in) :: atot(nShell)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iShell
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: NBasis
|
||||
|
||||
NBasis = 0
|
||||
do iShell=1,nShell
|
||||
NBasis = NBasis + (atot(iShell)*atot(iShell) + 3*atot(iShell) + 2)/2
|
||||
enddo
|
||||
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,'(A28,1X,I16)') 'Number of basis functions',NBasis
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,*)
|
||||
|
||||
end subroutine CalcNBasis
|
40
src/IntPak/CalcOm.f90
Normal file
40
src/IntPak/CalcOm.f90
Normal file
@ -0,0 +1,40 @@
|
||||
subroutine CalcOm(maxm,ExpPQi,NormPQSq,Om)
|
||||
|
||||
! Comute the 0^m: (00|00)^m
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: ExpPQi,NormPQSq
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: m
|
||||
double precision :: pi,dm,t
|
||||
double precision,allocatable :: Fm(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(inout):: Om (0:maxm)
|
||||
|
||||
allocate(Fm(0:maxm))
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! Campute generalized Boys functions
|
||||
|
||||
t = NormPQSq/ExpPQi
|
||||
call CalcBoysF(maxm,t,Fm)
|
||||
|
||||
! Compute (00|00)^m
|
||||
|
||||
do m=0,maxm
|
||||
dm =dble(m)
|
||||
Om(m) = (2d0/sqrt(pi))*(-1d0)**dm*(1d0/ExpPQi)**(dm+0.5d0)*Fm(m)
|
||||
enddo
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
end subroutine CalcOm
|
44
src/IntPak/CalcOm3e.f90
Normal file
44
src/IntPak/CalcOm3e.f90
Normal file
@ -0,0 +1,44 @@
|
||||
subroutine CalcOm3e(maxm,delta0,delta1,Y1,Y0,Om)
|
||||
|
||||
! Compute the 0^m for ERIs: (00|00)^m
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: delta0,delta1,Y0,Y1
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: m
|
||||
double precision :: pi,t,OG
|
||||
double precision,allocatable :: Fm(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(inout):: Om (0:maxm)
|
||||
|
||||
allocate(Fm(0:maxm))
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! Calculate OG
|
||||
|
||||
OG = (pi**4/delta0)**(3d0/2d0)*exp(-Y0)
|
||||
|
||||
! Campute generalized Boys functions
|
||||
|
||||
t = delta1/(delta1-delta0)*(Y1-Y0)
|
||||
call CalcBoysF(maxm,t,Fm)
|
||||
|
||||
! Compute (000|000)^m
|
||||
|
||||
do m=0,maxm
|
||||
Om(m) = (2d0/sqrt(pi))*OG*sqrt(delta0/(delta1-delta0))*(delta1/(delta1-delta0))**m
|
||||
Om(m) = Om(m)*Fm(m)
|
||||
enddo
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
end subroutine CalcOm3e
|
39
src/IntPak/CalcOmERI.f90
Normal file
39
src/IntPak/CalcOmERI.f90
Normal file
@ -0,0 +1,39 @@
|
||||
subroutine CalcOmERI(maxm,ExpY,NormYSq,Om)
|
||||
|
||||
! Compute the 0^m for ERIs: (00|00)^m
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: ExpY,NormYSq
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: m
|
||||
double precision :: pi,t
|
||||
double precision,allocatable :: Fm(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(inout):: Om (0:maxm)
|
||||
|
||||
allocate(Fm(0:maxm))
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! Campute generalized Boys functions
|
||||
|
||||
t = ExpY*NormYSq
|
||||
call CalcBoysF(maxm,t,Fm)
|
||||
|
||||
! Compute (00|00)^m
|
||||
|
||||
do m=0,maxm
|
||||
Om(m) = (2d0/sqrt(pi))*sqrt(ExpY)*Fm(m)
|
||||
enddo
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
end subroutine CalcOmERI
|
39
src/IntPak/CalcOmErf.f90
Normal file
39
src/IntPak/CalcOmErf.f90
Normal file
@ -0,0 +1,39 @@
|
||||
subroutine CalcOmErf(maxm,ExpY,fG,NormYSq,Om)
|
||||
|
||||
! Compute the 0^m for the long-range Coulomb operator: (00|erf(r)/r|00)^m
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: ExpY,fG,NormYSq
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: m
|
||||
double precision :: pi,t
|
||||
double precision,allocatable :: Fm(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(inout):: Om (0:maxm)
|
||||
|
||||
allocate(Fm(0:maxm))
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! Campute generalized Boys functions
|
||||
|
||||
t = fG*NormYSq
|
||||
call CalcBoysF(maxm,t,Fm)
|
||||
|
||||
! Compute (00|00)^m
|
||||
|
||||
do m=0,maxm
|
||||
Om(m) = (2d0/sqrt(pi))*sqrt(fG)*(fG/ExpY)**m*Fm(m)
|
||||
enddo
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
end subroutine CalcOmErf
|
40
src/IntPak/CalcOmNuc.f90
Normal file
40
src/IntPak/CalcOmNuc.f90
Normal file
@ -0,0 +1,40 @@
|
||||
subroutine CalcOmNuc(maxm,ExpPQi,NormPQSq,Om)
|
||||
|
||||
! Compute (0|V|0)^m
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: ExpPQi,NormPQSq
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: m
|
||||
double precision :: pi,dm,t
|
||||
double precision,allocatable :: Fm(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(inout):: Om (0:maxm)
|
||||
|
||||
allocate(Fm(0:maxm))
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! Campute generalized Boys functions
|
||||
|
||||
t = NormPQSq/ExpPQi
|
||||
call CalcBoysF(maxm,t,Fm)
|
||||
|
||||
! Compute (00|00)^m
|
||||
|
||||
do m=0,maxm
|
||||
dm =dble(m)
|
||||
Om(m) = (2d0/sqrt(pi))*(1d0/ExpPQi)**(dm+0.5d0)*Fm(m)
|
||||
enddo
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
end subroutine CalcOmNuc
|
43
src/IntPak/CalcOmYuk.f90
Normal file
43
src/IntPak/CalcOmYuk.f90
Normal file
@ -0,0 +1,43 @@
|
||||
subroutine CalcOmYuk(maxm,ExpG,ExpY,fG,NormYSq,Om)
|
||||
|
||||
! Compute the 0^m for the screened Coulomb operator: (00|f12/r12|00)^m
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: ExpG,ExpY,fG,NormYSq
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: m,k
|
||||
double precision :: pi,t,dbinom
|
||||
double precision,allocatable :: Fm(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(inout):: Om(0:maxm)
|
||||
|
||||
allocate(Fm(0:maxm))
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! Campute generalized Boys functions
|
||||
|
||||
t = (ExpY - fG)*NormYSq
|
||||
call CalcBoysF(maxm,t,Fm)
|
||||
|
||||
! Compute (00|00)^m
|
||||
|
||||
do m=0,maxm
|
||||
Om(m) = 0d0
|
||||
do k=0,m
|
||||
Om(m) = Om(m) + dbinom(m,k)*(ExpY/ExpG)**k*Fm(k)
|
||||
enddo
|
||||
Om(m) = (2d0/sqrt(pi))*sqrt(ExpY)*(fG/ExpG)*exp(-fG*NormYSq)*Om(m)
|
||||
enddo
|
||||
|
||||
deallocate(Fm)
|
||||
|
||||
end subroutine CalcOmYuk
|
308
src/IntPak/Compute2eInt.f90
Normal file
308
src/IntPak/Compute2eInt.f90
Normal file
@ -0,0 +1,308 @@
|
||||
subroutine Compute2eInt(debug,iType,nShell, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np2eInt,nSigp2eInt,nc2eInt,nSigc2eInt)
|
||||
|
||||
|
||||
! Compute various two-electron integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
integer,intent(in) :: iType,nShell
|
||||
double precision,intent(in) :: ExpS
|
||||
integer,intent(in) :: KG
|
||||
double precision,intent(in) :: DG(KG),ExpG(KG)
|
||||
double precision,intent(in) :: CenterShell(maxShell,3)
|
||||
integer,intent(in) :: TotAngMomShell(maxShell),KShell(maxShell)
|
||||
double precision,intent(in) :: DShell(maxShell,maxK),ExpShell(maxShell,maxK)
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: chemist_notation
|
||||
integer :: KBra(2),KKet(2)
|
||||
double precision :: CenterBra(2,3),CenterKet(2,3)
|
||||
integer :: TotAngMomBra(2),TotAngMomKet(2)
|
||||
integer :: AngMomBra(2,3),AngMomKet(2,3)
|
||||
integer :: nShellFunctionBra(2),nShellFunctionKet(2)
|
||||
integer,allocatable :: ShellFunctionA1(:,:),ShellFunctionA2(:,:)
|
||||
integer,allocatable :: ShellFunctionB1(:,:),ShellFunctionB2(:,:)
|
||||
double precision :: ExpBra(2),ExpKet(2)
|
||||
double precision :: DBra(2),DKet(2)
|
||||
double precision :: NormCoeff
|
||||
|
||||
integer :: iBasA1,iBasA2,iBasB1,iBasB2
|
||||
integer :: iShA1,iShA2,iShB1,iShB2
|
||||
integer :: iShFA1,iShFA2,iShFB1,iShFB2
|
||||
integer :: iKA1,iKA2,iKB1,iKB2
|
||||
integer :: iFile
|
||||
|
||||
double precision :: p2eInt,c2eInt
|
||||
double precision :: start_c2eInt,end_c2eInt,t_c2eInt
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: np2eInt,nSigp2eInt,nc2eInt,nSigc2eInt
|
||||
|
||||
chemist_notation = .true.
|
||||
|
||||
np2eInt = 0
|
||||
nSigp2eInt = 0
|
||||
|
||||
nc2eInt = 0
|
||||
nSigc2eInt = 0
|
||||
|
||||
iBasA1 = 0
|
||||
iBasA2 = 0
|
||||
iBasB1 = 0
|
||||
iBasB2 = 0
|
||||
|
||||
! Open file to write down integrals
|
||||
|
||||
iFile = 0
|
||||
|
||||
if(iType == 1) then
|
||||
|
||||
! Compute two-electron integrals over the Coulomb operator
|
||||
|
||||
write(*,*) '******************************************'
|
||||
write(*,*) ' Compute two-electron repulsion integrals '
|
||||
write(*,*) '******************************************'
|
||||
write(*,*)
|
||||
|
||||
iFile = 21
|
||||
open(unit=iFile,file='int/ERI.dat')
|
||||
|
||||
elseif(iType == 2) then
|
||||
|
||||
! Compute two-electron integrals over Slater geminals
|
||||
|
||||
write(*,*) '****************************************'
|
||||
write(*,*) ' Compute two-electron geminal integrals '
|
||||
write(*,*) '****************************************'
|
||||
write(*,*)
|
||||
|
||||
iFile = 22
|
||||
open(unit=iFile,file='int/F12.dat')
|
||||
|
||||
elseif(iType == 3) then
|
||||
|
||||
! Compute two-electron integrals over the Yukawa operator
|
||||
|
||||
write(*,*) '***************************************'
|
||||
write(*,*) ' Compute two-electron Yukawa integrals '
|
||||
write(*,*) '***************************************'
|
||||
write(*,*)
|
||||
|
||||
iFile = 23
|
||||
open(unit=iFile,file='int/Yuk.dat')
|
||||
|
||||
elseif(iType == 4) then
|
||||
|
||||
! Compute two-electron integrals over the long-range Coulomb operator
|
||||
|
||||
write(*,*) '**************************************'
|
||||
write(*,*) ' Compute long-range Coulomb integrals '
|
||||
write(*,*) '**************************************'
|
||||
write(*,*)
|
||||
|
||||
iFile = 24
|
||||
open(unit=iFile,file='int/Erf.dat')
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A1
|
||||
!------------------------------------------------------------------------
|
||||
do iShA1=1,nShell
|
||||
|
||||
CenterBra(1,1) = CenterShell(iShA1,1)
|
||||
CenterBra(1,2) = CenterShell(iShA1,2)
|
||||
CenterBra(1,3) = CenterShell(iShA1,3)
|
||||
|
||||
TotAngMomBra(1) = TotAngMomShell(iShA1)
|
||||
nShellFunctionBra(1) = (TotAngMomBra(1)*TotAngMomBra(1) + 3*TotAngMomBra(1) + 2)/2
|
||||
allocate(ShellFunctionA1(1:nShellFunctionBra(1),1:3))
|
||||
call GenerateShell(TotAngMomBra(1),nShellFunctionBra(1),ShellFunctionA1)
|
||||
|
||||
KBra(1) = KShell(iShA1)
|
||||
|
||||
do iShFA1=1,nShellFunctionBra(1)
|
||||
|
||||
iBasA1 = iBasA1 + 1
|
||||
AngMomBra(1,1) = ShellFunctionA1(iShFA1,1)
|
||||
AngMomBra(1,2) = ShellFunctionA1(iShFA1,2)
|
||||
AngMomBra(1,3) = ShellFunctionA1(iShFA1,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell B1
|
||||
!------------------------------------------------------------------------
|
||||
do iShB1=1,iShA1
|
||||
|
||||
CenterKet(1,1) = CenterShell(iShB1,1)
|
||||
CenterKet(1,2) = CenterShell(iShB1,2)
|
||||
CenterKet(1,3) = CenterShell(iShB1,3)
|
||||
|
||||
TotAngMomKet(1) = TotAngMomShell(iShB1)
|
||||
nShellFunctionKet(1) = (TotAngMomKet(1)*TotAngMomKet(1) + 3*TotAngMomKet(1) + 2)/2
|
||||
allocate(ShellFunctionB1(1:nShellFunctionKet(1),1:3))
|
||||
call GenerateShell(TotAngMomKet(1),nShellFunctionKet(1),ShellFunctionB1)
|
||||
|
||||
KKet(1) = KShell(iShB1)
|
||||
|
||||
do iShFB1=1,nShellFunctionKet(1)
|
||||
|
||||
iBasB1 = iBasB1 + 1
|
||||
AngMomKet(1,1) = ShellFunctionB1(iShFB1,1)
|
||||
AngMomKet(1,2) = ShellFunctionB1(iShFB1,2)
|
||||
AngMomKet(1,3) = ShellFunctionB1(iShFB1,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A2
|
||||
!------------------------------------------------------------------------
|
||||
do iShA2=1,iShA1
|
||||
|
||||
CenterBra(2,1) = CenterShell(iShA2,1)
|
||||
CenterBra(2,2) = CenterShell(iShA2,2)
|
||||
CenterBra(2,3) = CenterShell(iShA2,3)
|
||||
|
||||
TotAngMomBra(2) = TotAngMomShell(iShA2)
|
||||
nShellFunctionBra(2) = (TotAngMomBra(2)*TotAngMomBra(2) + 3*TotAngMomBra(2) + 2)/2
|
||||
allocate(ShellFunctionA2(1:nShellFunctionBra(2),1:3))
|
||||
call GenerateShell(TotAngMomBra(2),nShellFunctionBra(2),ShellFunctionA2)
|
||||
|
||||
KBra(2) = KShell(iShA2)
|
||||
|
||||
do iShFA2=1,nShellFunctionBra(2)
|
||||
|
||||
iBasA2 = iBasA2 + 1
|
||||
AngMomBra(2,1) = ShellFunctionA2(iShFA2,1)
|
||||
AngMomBra(2,2) = ShellFunctionA2(iShFA2,2)
|
||||
AngMomBra(2,3) = ShellFunctionA2(iShFA2,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell B2
|
||||
!------------------------------------------------------------------------
|
||||
do iShB2=1,iShA2
|
||||
|
||||
CenterKet(2,1) = CenterShell(iShB2,1)
|
||||
CenterKet(2,2) = CenterShell(iShB2,2)
|
||||
CenterKet(2,3) = CenterShell(iShB2,3)
|
||||
|
||||
TotAngMomKet(2) = TotAngMomShell(iShB2)
|
||||
nShellFunctionKet(2) = (TotAngMomKet(2)*TotAngMomKet(2) + 3*TotAngMomKet(2) + 2)/2
|
||||
allocate(ShellFunctionB2(1:nShellFunctionKet(2),1:3))
|
||||
call GenerateShell(TotAngMomKet(2),nShellFunctionKet(2),ShellFunctionB2)
|
||||
|
||||
KKet(2) = KShell(iShB2)
|
||||
|
||||
do iShFB2=1,nShellFunctionKet(2)
|
||||
|
||||
iBasB2 = iBasB2 + 1
|
||||
AngMomKet(2,1) = ShellFunctionB2(iShFB2,1)
|
||||
AngMomKet(2,2) = ShellFunctionB2(iShFB2,2)
|
||||
AngMomKet(2,3) = ShellFunctionB2(iShFB2,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over contraction degrees
|
||||
!-------------------------------------------------------------------------
|
||||
call cpu_time(start_c2eInt)
|
||||
|
||||
c2eInt = 0d0
|
||||
|
||||
do iKA1=1,KBra(1)
|
||||
ExpBra(1) = ExpShell(iShA1,iKA1)
|
||||
DBra(1) = DShell(iShA1,iKA1)*NormCoeff(ExpBra(1),AngMomBra(1,1:3))
|
||||
do iKA2=1,KBra(2)
|
||||
ExpBra(2) = ExpShell(iShA2,iKA2)
|
||||
DBra(2) = DShell(iShA2,iKA2)*NormCoeff(ExpBra(2),AngMomBra(2,1:3))
|
||||
do iKB1=1,KKet(1)
|
||||
ExpKet(1) = ExpShell(iShB1,iKB1)
|
||||
DKet(1) = DShell(iShB1,iKB1)*NormCoeff(ExpKet(1),AngMomKet(1,1:3))
|
||||
do iKB2=1,KKet(2)
|
||||
ExpKet(2) = ExpShell(iShB2,iKB2)
|
||||
DKet(2) = DShell(iShB2,iKB2)*NormCoeff(ExpKet(2),AngMomKet(2,1:3))
|
||||
|
||||
call S2eInt(debug,iType,np2eInt,nSigp2eInt, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
ExpBra,CenterBra,AngMomBra, &
|
||||
ExpKet,CenterKet,AngMomKet, &
|
||||
p2eInt)
|
||||
|
||||
c2eInt = c2eInt + DBra(1)*DBra(2)*DKet(1)*DKet(2)*p2eInt
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call cpu_time(end_c2eInt)
|
||||
|
||||
nc2eInt = nc2eInt + 1
|
||||
|
||||
if(abs(c2eInt) > 1d-15) then
|
||||
|
||||
nSigc2eInt = nSigc2eInt + 1
|
||||
t_c2eInt = end_c2eInt - start_c2eInt
|
||||
|
||||
if(chemist_notation) then
|
||||
|
||||
write(iFile,'(I6,I6,I6,I6,F20.15)') iBasA1,iBasB1,iBasA2,iBasB2,c2eInt
|
||||
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6,1X,I6,1X,I6)') &
|
||||
'(a1b1|a2b2) = ',c2eInt,iBasA1,iBasB1,iBasA2,iBasB2
|
||||
endif
|
||||
|
||||
else
|
||||
|
||||
write(iFile,'(I6,I6,I6,I6,F20.15)') iBasA1,iBasA2,iBasB1,iBasB2,c2eInt
|
||||
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6,1X,I6,1X,I6)') &
|
||||
'<a1a2|b1b2> = ',c2eInt,iBasA1,iBasA2,iBasB1,iBasB2
|
||||
endif
|
||||
|
||||
endif
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionB2)
|
||||
enddo
|
||||
iBasB2 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B2
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionA2)
|
||||
enddo
|
||||
iBasA2 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A2
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionB1)
|
||||
enddo
|
||||
iBasB1 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B1
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionA1)
|
||||
enddo
|
||||
iBasA1 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A1
|
||||
!------------------------------------------------------------------------
|
||||
write(*,*)
|
||||
|
||||
! Close files to write down integrals
|
||||
|
||||
close(unit=iFile)
|
||||
|
||||
end subroutine Compute2eInt
|
328
src/IntPak/Compute3eInt.f90
Normal file
328
src/IntPak/Compute3eInt.f90
Normal file
@ -0,0 +1,328 @@
|
||||
subroutine Compute3eInt(debug,iType,nShell, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np3eInt,nSigp3eInt,nc3eInt,nSigc3eInt)
|
||||
|
||||
|
||||
! Compute long-range Coulomb integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
integer,intent(in) :: iType,nShell
|
||||
double precision,intent(in) :: ExpS
|
||||
integer,intent(in) :: KG
|
||||
double precision,intent(in) :: DG(KG),ExpG(KG)
|
||||
double precision,intent(in) :: CenterShell(maxShell,3)
|
||||
integer,intent(in) :: TotAngMomShell(maxShell),KShell(maxShell)
|
||||
double precision,intent(in) :: DShell(maxShell,maxK),ExpShell(maxShell,maxK)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: KBra(3),KKet(3)
|
||||
double precision :: CenterBra(3,3),CenterKet(3,3)
|
||||
integer :: TotAngMomBra(3),TotAngMomKet(3)
|
||||
integer :: AngMomBra(3,3),AngMomKet(3,3)
|
||||
integer :: nShellFunctionBra(3),nShellFunctionKet(3)
|
||||
integer,allocatable :: ShellFunctionA1(:,:),ShellFunctionA2(:,:),ShellFunctionA3(:,:)
|
||||
integer,allocatable :: ShellFunctionB1(:,:),ShellFunctionB2(:,:),ShellFunctionB3(:,:)
|
||||
double precision :: ExpBra(3),ExpKet(3)
|
||||
double precision :: DBra(3),DKet(3)
|
||||
double precision :: NormCoeff
|
||||
|
||||
integer :: iBasA1,iBasA2,iBasA3,iBasB1,iBasB2,iBasB3
|
||||
integer :: iShA1,iShA2,iShA3,iShB1,iShB2,iShB3
|
||||
integer :: iShFA1,iShFA2,iShFA3,iShFB1,iShFB2,iShFB3
|
||||
integer :: iKA1,iKA2,iKA3,iKB1,iKB2,iKB3
|
||||
integer :: iFile
|
||||
|
||||
double precision :: p3eInt,c3eInt
|
||||
double precision :: start_c3eInt,end_c3eInt,t_c3eInt
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: np3eInt,nSigp3eInt,nc3eInt,nSigc3eInt
|
||||
|
||||
! Compute three-electron integrals
|
||||
|
||||
write(*,*) '**********************************'
|
||||
write(*,*) ' Compute three-electron integrals '
|
||||
write(*,*) '**********************************'
|
||||
write(*,*)
|
||||
|
||||
np3eInt = 0
|
||||
nSigp3eInt = 0
|
||||
|
||||
nc3eInt = 0
|
||||
nSigc3eInt = 0
|
||||
|
||||
iBasA1 = 0
|
||||
iBasA2 = 0
|
||||
iBasA3 = 0
|
||||
iBasB1 = 0
|
||||
iBasB2 = 0
|
||||
iBasB3 = 0
|
||||
|
||||
! Open file to write down integrals
|
||||
|
||||
iFile = 0
|
||||
|
||||
if(iType == 1) then
|
||||
iFile = 31
|
||||
open(unit=iFile,file='int/3eInt_Type1.dat')
|
||||
elseif(iType == 2) then
|
||||
iFile = 32
|
||||
open(unit=iFile,file='int/3eInt_Type2.dat')
|
||||
elseif(iType == 3) then
|
||||
iFile = 33
|
||||
open(unit=iFile,file='int/3eInt_Type3.dat')
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A1
|
||||
!------------------------------------------------------------------------
|
||||
do iShA1=1,nShell
|
||||
|
||||
CenterBra(1,1) = CenterShell(iShA1,1)
|
||||
CenterBra(1,2) = CenterShell(iShA1,2)
|
||||
CenterBra(1,3) = CenterShell(iShA1,3)
|
||||
|
||||
TotAngMomBra(1) = TotAngMomShell(iShA1)
|
||||
nShellFunctionBra(1) = (TotAngMomBra(1)*TotAngMomBra(1) + 3*TotAngMomBra(1) + 2)/2
|
||||
allocate(ShellFunctionA1(1:nShellFunctionBra(1),1:3))
|
||||
call GenerateShell(TotAngMomBra(1),nShellFunctionBra(1),ShellFunctionA1)
|
||||
|
||||
KBra(1) = KShell(iShA1)
|
||||
|
||||
do iShFA1=1,nShellFunctionBra(1)
|
||||
|
||||
iBasA1 = iBasA1 + 1
|
||||
AngMomBra(1,1) = ShellFunctionA1(iShFA1,1)
|
||||
AngMomBra(1,2) = ShellFunctionA1(iShFA1,2)
|
||||
AngMomBra(1,3) = ShellFunctionA1(iShFA1,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A2
|
||||
!------------------------------------------------------------------------
|
||||
do iShA2=1,nShell
|
||||
|
||||
CenterBra(2,1) = CenterShell(iShA2,1)
|
||||
CenterBra(2,2) = CenterShell(iShA2,2)
|
||||
CenterBra(2,3) = CenterShell(iShA2,3)
|
||||
|
||||
TotAngMomBra(2) = TotAngMomShell(iShA2)
|
||||
nShellFunctionBra(2) = (TotAngMomBra(2)*TotAngMomBra(2) + 3*TotAngMomBra(2) + 2)/2
|
||||
allocate(ShellFunctionA2(1:nShellFunctionBra(2),1:3))
|
||||
call GenerateShell(TotAngMomBra(2),nShellFunctionBra(2),ShellFunctionA2)
|
||||
|
||||
KBra(2) = KShell(iShA2)
|
||||
|
||||
do iShFA2=1,nShellFunctionBra(2)
|
||||
|
||||
iBasA2 = iBasA2 + 1
|
||||
AngMomBra(2,1) = ShellFunctionA2(iShFA2,1)
|
||||
AngMomBra(2,2) = ShellFunctionA2(iShFA2,2)
|
||||
AngMomBra(2,3) = ShellFunctionA2(iShFA2,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A3
|
||||
!------------------------------------------------------------------------
|
||||
do iShA3=1,nShell
|
||||
|
||||
CenterBra(3,1) = CenterShell(iShA3,1)
|
||||
CenterBra(3,2) = CenterShell(iShA3,2)
|
||||
CenterBra(3,3) = CenterShell(iShA3,3)
|
||||
|
||||
TotAngMomBra(3) = TotAngMomShell(iShA3)
|
||||
nShellFunctionBra(3) = (TotAngMomBra(3)*TotAngMomBra(3) + 3*TotAngMomBra(3) + 2)/2
|
||||
allocate(ShellFunctionA3(1:nShellFunctionBra(3),1:3))
|
||||
call GenerateShell(TotAngMomBra(3),nShellFunctionBra(3),ShellFunctionA3)
|
||||
|
||||
KBra(3) = KShell(iShA3)
|
||||
|
||||
do iShFA3=1,nShellFunctionBra(3)
|
||||
|
||||
iBasA3 = iBasA3 + 1
|
||||
AngMomBra(3,1) = ShellFunctionA3(iShFA3,1)
|
||||
AngMomBra(3,2) = ShellFunctionA3(iShFA3,2)
|
||||
AngMomBra(3,3) = ShellFunctionA3(iShFA3,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell B1
|
||||
!------------------------------------------------------------------------
|
||||
do iShB1=1,nShell
|
||||
|
||||
CenterKet(1,1) = CenterShell(iShB1,1)
|
||||
CenterKet(1,2) = CenterShell(iShB1,2)
|
||||
CenterKet(1,3) = CenterShell(iShB1,3)
|
||||
|
||||
TotAngMomKet(1) = TotAngMomShell(iShB1)
|
||||
nShellFunctionKet(1) = (TotAngMomKet(1)*TotAngMomKet(1) + 3*TotAngMomKet(1) + 2)/2
|
||||
allocate(ShellFunctionB1(1:nShellFunctionKet(1),1:3))
|
||||
call GenerateShell(TotAngMomKet(1),nShellFunctionKet(1),ShellFunctionB1)
|
||||
|
||||
KKet(1) = KShell(iShB1)
|
||||
|
||||
do iShFB1=1,nShellFunctionKet(1)
|
||||
|
||||
iBasB1 = iBasB1 + 1
|
||||
AngMomKet(1,1) = ShellFunctionB1(iShFB1,1)
|
||||
AngMomKet(1,2) = ShellFunctionB1(iShFB1,2)
|
||||
AngMomKet(1,3) = ShellFunctionB1(iShFB1,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell B2
|
||||
!------------------------------------------------------------------------
|
||||
do iShB2=1,nShell
|
||||
|
||||
CenterKet(2,1) = CenterShell(iShB2,1)
|
||||
CenterKet(2,2) = CenterShell(iShB2,2)
|
||||
CenterKet(2,3) = CenterShell(iShB2,3)
|
||||
|
||||
TotAngMomKet(2) = TotAngMomShell(iShB2)
|
||||
nShellFunctionKet(2) = (TotAngMomKet(2)*TotAngMomKet(2) + 3*TotAngMomKet(2) + 2)/2
|
||||
allocate(ShellFunctionB2(1:nShellFunctionKet(2),1:3))
|
||||
call GenerateShell(TotAngMomKet(2),nShellFunctionKet(2),ShellFunctionB2)
|
||||
|
||||
KKet(2) = KShell(iShB2)
|
||||
|
||||
do iShFB2=1,nShellFunctionKet(2)
|
||||
|
||||
iBasB2 = iBasB2 + 1
|
||||
AngMomKet(2,1) = ShellFunctionB2(iShFB2,1)
|
||||
AngMomKet(2,2) = ShellFunctionB2(iShFB2,2)
|
||||
AngMomKet(2,3) = ShellFunctionB2(iShFB2,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell B3
|
||||
!------------------------------------------------------------------------
|
||||
do iShB3=1,nShell
|
||||
|
||||
CenterKet(3,1) = CenterShell(iShB3,1)
|
||||
CenterKet(3,2) = CenterShell(iShB3,2)
|
||||
CenterKet(3,3) = CenterShell(iShB3,3)
|
||||
|
||||
TotAngMomKet(3) = TotAngMomShell(iShB3)
|
||||
nShellFunctionKet(3) = (TotAngMomKet(3)*TotAngMomKet(3) + 3*TotAngMomKet(3) + 2)/2
|
||||
allocate(ShellFunctionB3(1:nShellFunctionKet(3),1:3))
|
||||
call GenerateShell(TotAngMomKet(3),nShellFunctionKet(3),ShellFunctionB3)
|
||||
|
||||
KKet(3) = KShell(iShB3)
|
||||
|
||||
do iShFB3=1,nShellFunctionKet(3)
|
||||
|
||||
iBasB3 = iBasB3 + 1
|
||||
AngMomKet(3,1) = ShellFunctionB3(iShFB3,1)
|
||||
AngMomKet(3,2) = ShellFunctionB3(iShFB3,2)
|
||||
AngMomKet(3,3) = ShellFunctionB3(iShFB3,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over contraction degrees
|
||||
!-------------------------------------------------------------------------
|
||||
call cpu_time(start_c3eInt)
|
||||
|
||||
c3eInt = 0d0
|
||||
|
||||
do iKA1=1,KBra(1)
|
||||
ExpBra(1) = ExpShell(iShA1,iKA1)
|
||||
DBra(1) = DShell(iShA1,iKA1)*NormCoeff(ExpBra(1),AngMomBra(1,1:3))
|
||||
do iKA2=1,KBra(2)
|
||||
ExpBra(2) = ExpShell(iShA2,iKA2)
|
||||
DBra(2) = DShell(iShA2,iKA2)*NormCoeff(ExpBra(2),AngMomBra(2,1:3))
|
||||
do iKA3=1,KBra(3)
|
||||
ExpBra(3) = ExpShell(iShA3,iKA3)
|
||||
DBra(3) = DShell(iShA3,iKA3)*NormCoeff(ExpBra(3),AngMomBra(3,1:3))
|
||||
do iKB1=1,KKet(1)
|
||||
ExpKet(1) = ExpShell(iShB1,iKB1)
|
||||
DKet(1) = DShell(iShB1,iKB1)*NormCoeff(ExpKet(1),AngMomKet(1,1:3))
|
||||
do iKB2=1,KKet(2)
|
||||
ExpKet(2) = ExpShell(iShB2,iKB2)
|
||||
DKet(2) = DShell(iShB2,iKB2)*NormCoeff(ExpKet(2),AngMomKet(2,1:3))
|
||||
do iKB3=1,KKet(3)
|
||||
ExpKet(3) = ExpShell(iShB3,iKB3)
|
||||
DKet(3) = DShell(iShB3,iKB3)*NormCoeff(ExpKet(3),AngMomKet(3,1:3))
|
||||
|
||||
call S3eInt(debug,iType,np3eInt,nSigp3eInt, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
ExpBra,CenterBra,AngMomBra, &
|
||||
ExpKet,CenterKet,AngMomKet, &
|
||||
p3eInt)
|
||||
|
||||
c3eInt = c3eInt + DBra(1)*DBra(2)*DBra(3)*DKet(1)*DKet(2)*DKet(3)*p3eInt
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call cpu_time(end_c3eInt)
|
||||
|
||||
nc3eInt = nc3eInt + 1
|
||||
if(abs(c3eInt) > 1d-15) then
|
||||
nSigc3eInt = nSigc3eInt + 1
|
||||
t_c3eInt = end_c3eInt - start_c3eInt
|
||||
write(iFile,'(F20.15,I6,I6,I6,I6,I6,I6)') &
|
||||
c3eInt,iBasA1,iBasA2,iBasA3,iBasB1,iBasB2,iBasB3
|
||||
if(.true.) then
|
||||
write(*,'(A15,1X,F16.10,1X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I6)') &
|
||||
'(a1a2a3|b1b2b3) = ',c3eInt,iBasA1,iBasA2,iBasA3,iBasB1,iBasB2,iBasB3
|
||||
endif
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionB3)
|
||||
enddo
|
||||
iBasB3 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B3
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionB2)
|
||||
enddo
|
||||
iBasB2 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B2
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionB1)
|
||||
enddo
|
||||
iBasB1 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B1
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionA3)
|
||||
enddo
|
||||
iBasA3 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A3
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionA2)
|
||||
enddo
|
||||
iBasA2 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A2
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionA1)
|
||||
enddo
|
||||
iBasA1 = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A1
|
||||
!------------------------------------------------------------------------
|
||||
write(*,*)
|
||||
|
||||
! Close files to write down integrals
|
||||
|
||||
close(unit=iFile)
|
||||
|
||||
end subroutine Compute3eInt
|
246
src/IntPak/Compute4eInt.f90
Normal file
246
src/IntPak/Compute4eInt.f90
Normal file
@ -0,0 +1,246 @@
|
||||
subroutine Compute4eInt(debug,nEl,iType,nShell,ExpS, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
npErf,nSigpErf,ncErf,nSigcErf)
|
||||
|
||||
|
||||
! Compute long-range Coulomb integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
integer,intent(in) :: nEl,iType,nShell
|
||||
double precision :: ExpS
|
||||
double precision,intent(in) :: CenterShell(maxShell,3)
|
||||
integer,intent(in) :: TotAngMomShell(maxShell),KShell(maxShell)
|
||||
double precision,intent(in) :: DShell(maxShell,maxK),ExpShell(maxShell,maxK)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: KA,KB,KC,KD
|
||||
double precision :: CenterA(3),CenterB(3),CenterC(3),CenterD(3)
|
||||
integer :: TotAngMomA,TotAngMomB,TotAngMomC,TotAngMomD
|
||||
integer :: AngMomA(3),AngMomB(3),AngMomC(3),AngMomD(3)
|
||||
integer :: nShellFunctionA,nShellFunctionB, &
|
||||
nShellFunctionC,nShellFunctionD
|
||||
integer,allocatable :: ShellFunctionA(:,:),ShellFunctionB(:,:), &
|
||||
ShellFunctionC(:,:),ShellFunctionD(:,:)
|
||||
double precision :: ExpA,ExpB,ExpC,ExpD
|
||||
double precision,allocatable :: DA,DB,DC,DD
|
||||
double precision :: NormCoeff
|
||||
|
||||
integer :: iBasA,iBasB,iBasC,iBasD
|
||||
integer :: iShA,iShB,iShC,iShD
|
||||
integer :: iShFA,iShFB,iShFC,iShFD
|
||||
integer :: iKA,iKB,iKC,iKD
|
||||
|
||||
double precision :: pErf,cErf
|
||||
double precision :: start_cErf,end_cErf,t_cErf
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: npErf,nSigpErf,ncErf,nSigcErf
|
||||
|
||||
! Compute two-electron integrals over long-range Coulomb operator
|
||||
|
||||
write(*,*) '**********************************'
|
||||
write(*,*) ' Compute three-electron integrals '
|
||||
write(*,*) '**********************************'
|
||||
write(*,*)
|
||||
|
||||
npErf = 0
|
||||
nSigpErf = 0
|
||||
|
||||
ncErf = 0
|
||||
nSigcErf = 0
|
||||
|
||||
iBasA = 0
|
||||
iBasB = 0
|
||||
iBasC = 0
|
||||
iBasD = 0
|
||||
|
||||
! Open file to write down integrals
|
||||
|
||||
open(unit=41,file='int/4eInt_Type1.dat')
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A
|
||||
!------------------------------------------------------------------------
|
||||
do iShA=1,nShell
|
||||
|
||||
CenterA(1) = CenterShell(iShA,1)
|
||||
CenterA(2) = CenterShell(iShA,2)
|
||||
CenterA(3) = CenterShell(iShA,3)
|
||||
|
||||
TotAngMomA = TotAngMomShell(iShA)
|
||||
nShellFunctionA = (TotAngMomA*TotAngMomA + 3*TotAngMomA + 2)/2
|
||||
allocate(ShellFunctionA(1:nShellFunctionA,1:3))
|
||||
call GenerateShell(TotAngMomA,nShellFunctionA,ShellFunctionA)
|
||||
|
||||
KA = KShell(iShA)
|
||||
|
||||
do iShFA=1,nShellFunctionA
|
||||
|
||||
iBasA = iBasA + 1
|
||||
AngMomA(1) = ShellFunctionA(iShFA,1)
|
||||
AngMomA(2) = ShellFunctionA(iShFA,2)
|
||||
AngMomA(3) = ShellFunctionA(iShFA,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
do iShB=1,iShA
|
||||
|
||||
CenterB(1) = CenterShell(iShB,1)
|
||||
CenterB(2) = CenterShell(iShB,2)
|
||||
CenterB(3) = CenterShell(iShB,3)
|
||||
|
||||
TotAngMomB = TotAngMomShell(iShB)
|
||||
nShellFunctionB = (TotAngMomB*TotAngMomB + 3*TotAngMomB + 2)/2
|
||||
allocate(ShellFunctionB(1:nShellFunctionB,1:3))
|
||||
call GenerateShell(TotAngMomB,nShellFunctionB,ShellFunctionB)
|
||||
|
||||
KB = KShell(iShB)
|
||||
|
||||
do iShFB=1,nShellFunctionB
|
||||
|
||||
iBasB = iBasB + 1
|
||||
AngMomB(1) = ShellFunctionB(iShFB,1)
|
||||
AngMomB(2) = ShellFunctionB(iShFB,2)
|
||||
AngMomB(3) = ShellFunctionB(iShFB,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell C
|
||||
!------------------------------------------------------------------------
|
||||
do iShC=1,iShA
|
||||
|
||||
CenterC(1) = CenterShell(iShC,1)
|
||||
CenterC(2) = CenterShell(iShC,2)
|
||||
CenterC(3) = CenterShell(iShC,3)
|
||||
|
||||
TotAngMomC = TotAngMomShell(iShC)
|
||||
nShellFunctionC = (TotAngMomC*TotAngMomC + 3*TotAngMomC + 2)/2
|
||||
allocate(ShellFunctionC(1:nShellFunctionC,1:3))
|
||||
call GenerateShell(TotAngMomC,nShellFunctionC,ShellFunctionC)
|
||||
|
||||
KC = KShell(iShC)
|
||||
|
||||
do iShFC=1,nShellFunctionC
|
||||
|
||||
iBasC = iBasC + 1
|
||||
AngMomC(1) = ShellFunctionC(iShFC,1)
|
||||
AngMomC(2) = ShellFunctionC(iShFC,2)
|
||||
AngMomC(3) = ShellFunctionC(iShFC,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell D
|
||||
!------------------------------------------------------------------------
|
||||
do iShD=1,iShC
|
||||
|
||||
CenterD(1) = CenterShell(iShD,1)
|
||||
CenterD(2) = CenterShell(iShD,2)
|
||||
CenterD(3) = CenterShell(iShD,3)
|
||||
|
||||
TotAngMomD = TotAngMomShell(iShD)
|
||||
nShellFunctionD = (TotAngMomD*TotAngMomD + 3*TotAngMomD + 2)/2
|
||||
allocate(ShellFunctionD(1:nShellFunctionD,1:3))
|
||||
call GenerateShell(TotAngMomD,nShellFunctionD,ShellFunctionD)
|
||||
|
||||
KD = KShell(iShD)
|
||||
|
||||
do iShFD=1,nShellFunctionD
|
||||
|
||||
iBasD = iBasD + 1
|
||||
AngMomD(1) = ShellFunctionD(iShFD,1)
|
||||
AngMomD(2) = ShellFunctionD(iShFD,2)
|
||||
AngMomD(3) = ShellFunctionD(iShFD,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over contraction degrees
|
||||
!-------------------------------------------------------------------------
|
||||
call cpu_time(start_cErf)
|
||||
|
||||
cErf = 0d0
|
||||
|
||||
do iKA=1,KA
|
||||
ExpA = ExpShell(iShA,iKA)
|
||||
DA = DShell(iShA,iKA)*NormCoeff(ExpA,AngMomA)
|
||||
do iKB=1,KB
|
||||
ExpB = ExpShell(iShB,iKB)
|
||||
DB = DShell(iShB,iKB)*NormCoeff(ExpB,AngMomB)
|
||||
do iKC=1,KC
|
||||
ExpC = ExpShell(iShC,iKC)
|
||||
DC = DShell(iShC,iKC)*NormCoeff(ExpC,AngMomC)
|
||||
do iKD=1,KD
|
||||
ExpD = ExpShell(iShD,iKD)
|
||||
DD = DShell(iShD,iKD)*NormCoeff(ExpD,AngMomD)
|
||||
|
||||
! Erf module
|
||||
! call ErfInt(debug,npErf,nSigpErf, &
|
||||
! ExpS, &
|
||||
! ExpA,CenterA,AngMomA, &
|
||||
! ExpB,CenterB,AngMomB, &
|
||||
! ExpC,CenterC,AngMomC, &
|
||||
! ExpD,CenterD,AngMomD, &
|
||||
! pErf)
|
||||
|
||||
! cErf = cErf + DA*DB*DC*DD*pErf
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call cpu_time(end_cErf)
|
||||
|
||||
ncErf = ncErf + 1
|
||||
if(abs(cErf) > 1d-15) then
|
||||
nSigcErf = nSigcErf + 1
|
||||
t_cErf = end_cErf - start_cErf
|
||||
write(41,'(F20.15,I6,I6,I6,I6)') &
|
||||
cErf,iBasA,iBasB,iBasC,iBasD
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6,1X,I6,1X,I6)') &
|
||||
'(ab|erf(r)/r|cd) = ',cErf,iBasA,iBasB,iBasC,iBasD
|
||||
endif
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionD)
|
||||
enddo
|
||||
iBasD = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell D
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionC)
|
||||
enddo
|
||||
iBasC = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell C
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionB)
|
||||
enddo
|
||||
iBasB = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionA)
|
||||
enddo
|
||||
iBasA = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A
|
||||
!------------------------------------------------------------------------
|
||||
write(*,*)
|
||||
|
||||
! Close files to write down integrals
|
||||
|
||||
close(unit=41)
|
||||
|
||||
end subroutine Compute4eInt
|
166
src/IntPak/ComputeKin.f90
Normal file
166
src/IntPak/ComputeKin.f90
Normal file
@ -0,0 +1,166 @@
|
||||
subroutine ComputeKin(debug,nShell, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
npKin,nSigpKin,ncKin,nSigcKin)
|
||||
|
||||
|
||||
! Compute one-electron kinetic integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
integer,intent(in) :: nShell
|
||||
double precision,intent(in) :: CenterShell(maxShell,3)
|
||||
integer,intent(in) :: TotAngMomShell(maxShell),KShell(maxShell)
|
||||
double precision,intent(in) :: DShell(maxShell,maxK),ExpShell(maxShell,maxK)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: KA,KB
|
||||
double precision :: CenterA(3),CenterB(3)
|
||||
integer :: TotAngMomA,TotAngMomB
|
||||
integer :: AngMomA(3),AngMomB(3)
|
||||
integer :: nShellFunctionA,nShellFunctionB
|
||||
integer,allocatable :: ShellFunctionA(:,:),ShellFunctionB(:,:)
|
||||
double precision :: ExpA,ExpB
|
||||
double precision,allocatable :: DA,DB
|
||||
double precision :: NormCoeff
|
||||
|
||||
integer :: iBasA,iBasB
|
||||
integer :: iShA,iShB
|
||||
integer :: iShFA,iShFB
|
||||
integer :: iKA,iKB
|
||||
|
||||
double precision :: pKin,cKin
|
||||
double precision :: start_cKin,end_cKin,t_cKin
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: npKin,nSigpKin,ncKin,nSigcKin
|
||||
|
||||
! Compute one-electron integrals
|
||||
|
||||
write(*,*) '****************************************'
|
||||
write(*,*) ' Compute one-electron kinetic integrals '
|
||||
write(*,*) '****************************************'
|
||||
write(*,*)
|
||||
|
||||
npKin = 0
|
||||
nSigpKin = 0
|
||||
|
||||
ncKin = 0
|
||||
nSigcKin = 0
|
||||
|
||||
iBasA = 0
|
||||
iBasB = 0
|
||||
|
||||
! Open file to write down integrals
|
||||
|
||||
open(unit=9,file='int/Kin.dat')
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A
|
||||
!------------------------------------------------------------------------
|
||||
do iShA=1,nShell
|
||||
|
||||
CenterA(1) = CenterShell(iShA,1)
|
||||
CenterA(2) = CenterShell(iShA,2)
|
||||
CenterA(3) = CenterShell(iShA,3)
|
||||
|
||||
TotAngMomA = TotAngMomShell(iShA)
|
||||
nShellFunctionA = (TotAngMomA*TotAngMomA + 3*TotAngMomA + 2)/2
|
||||
allocate(ShellFunctionA(1:nShellFunctionA,1:3))
|
||||
call GenerateShell(TotAngMomA,nShellFunctionA,ShellFunctionA)
|
||||
|
||||
KA = KShell(iShA)
|
||||
|
||||
do iShFA=1,nShellFunctionA
|
||||
|
||||
iBasA = iBasA + 1
|
||||
AngMomA(1) = ShellFunctionA(iShFA,1)
|
||||
AngMomA(2) = ShellFunctionA(iShFA,2)
|
||||
AngMomA(3) = ShellFunctionA(iShFA,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
do iShB=1,nShell
|
||||
|
||||
CenterB(1) = CenterShell(iShB,1)
|
||||
CenterB(2) = CenterShell(iShB,2)
|
||||
CenterB(3) = CenterShell(iShB,3)
|
||||
|
||||
TotAngMomB = TotAngMomShell(iShB)
|
||||
nShellFunctionB = (TotAngMomB*TotAngMomB + 3*TotAngMomB + 2)/2
|
||||
allocate(ShellFunctionB(1:nShellFunctionB,1:3))
|
||||
call GenerateShell(TotAngMomB,nShellFunctionB,ShellFunctionB)
|
||||
|
||||
KB = KShell(iShB)
|
||||
|
||||
do iShFB=1,nShellFunctionB
|
||||
|
||||
iBasB = iBasB + 1
|
||||
AngMomB(1) = ShellFunctionB(iShFB,1)
|
||||
AngMomB(2) = ShellFunctionB(iShFB,2)
|
||||
AngMomB(3) = ShellFunctionB(iShFB,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over contraction degrees
|
||||
!-------------------------------------------------------------------------
|
||||
call cpu_time(start_cKin)
|
||||
|
||||
cKin = 0d0
|
||||
|
||||
do iKA=1,KA
|
||||
ExpA = ExpShell(iShA,iKA)
|
||||
DA = DShell(iShA,iKA)*NormCoeff(ExpA,AngMomA)
|
||||
do iKB=1,KB
|
||||
ExpB = ExpShell(iShB,iKB)
|
||||
DB = DShell(iShB,iKB)*NormCoeff(ExpB,AngMomB)
|
||||
|
||||
call KinInt(npKin,nSigpKin, &
|
||||
ExpA,CenterA,AngMomA, &
|
||||
ExpB,CenterB,AngMomB, &
|
||||
pKin)
|
||||
|
||||
cKin = cKin + DA*DB*pKin
|
||||
|
||||
enddo
|
||||
enddo
|
||||
call cpu_time(end_cKin)
|
||||
|
||||
ncKin = ncKin + 1
|
||||
if(abs(cKin) > 1d-15) then
|
||||
nSigcKin = nSigcKin + 1
|
||||
t_cKin = end_cKin - start_cKin
|
||||
write(9,'(I6,I6,F20.15)') iBasA,iBasB,cKin
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6)') '(a|T|b) = ',cKin,iBasA,iBasB
|
||||
endif
|
||||
endif
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionB)
|
||||
enddo
|
||||
iBasB = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionA)
|
||||
enddo
|
||||
iBasA = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A
|
||||
!------------------------------------------------------------------------
|
||||
write(*,*)
|
||||
|
||||
! Close files to write down integrals
|
||||
|
||||
close(unit=9)
|
||||
|
||||
end subroutine ComputeKin
|
189
src/IntPak/ComputeNuc.f90
Normal file
189
src/IntPak/ComputeNuc.f90
Normal file
@ -0,0 +1,189 @@
|
||||
subroutine ComputeNuc(debug,nShell, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
NAtoms,ZNuc,XYZAtoms, &
|
||||
npNuc,nSigpNuc,ncNuc,nSigcNuc)
|
||||
|
||||
|
||||
! Compute electron repulsion integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
integer,intent(in) :: nShell
|
||||
double precision,intent(in) :: CenterShell(maxShell,3)
|
||||
integer,intent(in) :: TotAngMomShell(maxShell),KShell(maxShell)
|
||||
double precision,intent(in) :: DShell(maxShell,maxK),ExpShell(maxShell,maxK)
|
||||
integer :: NAtoms
|
||||
double precision :: ZNuc(NAtoms),XYZAtoms(NAtoms,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: KA,KB
|
||||
double precision :: CenterA(3),CenterB(3),CenterC(3)
|
||||
integer :: TotAngMomA,TotAngMomB
|
||||
integer :: AngMomA(3),AngMomB(3)
|
||||
integer :: nShellFunctionA,nShellFunctionB
|
||||
integer,allocatable :: ShellFunctionA(:,:),ShellFunctionB(:,:)
|
||||
double precision :: ExpA,ExpB,ZC
|
||||
double precision,allocatable :: DA,DB
|
||||
double precision :: NormCoeff
|
||||
|
||||
integer :: iBasA,iBasB
|
||||
integer :: iShA,iShB,iNucC
|
||||
integer :: iShFA,iShFB
|
||||
integer :: iKA,iKB
|
||||
|
||||
double precision :: pNuc,cNuc
|
||||
double precision :: start_cNuc,end_cNuc,t_cNuc
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: npNuc,nSigpNuc,ncNuc,nSigcNuc
|
||||
|
||||
! Compute one-electron nuclear attraction integrals
|
||||
|
||||
write(*,*) '***************************************************'
|
||||
write(*,*) ' Compute one-electron nuclear attraction integrals '
|
||||
write(*,*) '***************************************************'
|
||||
write(*,*)
|
||||
|
||||
npNuc = 0
|
||||
nSigpNuc = 0
|
||||
|
||||
ncNuc = 0
|
||||
nSigcNuc = 0
|
||||
|
||||
iBasA = 0
|
||||
iBasB = 0
|
||||
iNucC = 0
|
||||
|
||||
! Open file to write down integrals
|
||||
|
||||
open(unit=10,file='int/Nuc.dat')
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A
|
||||
!------------------------------------------------------------------------
|
||||
do iShA=1,nShell
|
||||
|
||||
CenterA(1) = CenterShell(iShA,1)
|
||||
CenterA(2) = CenterShell(iShA,2)
|
||||
CenterA(3) = CenterShell(iShA,3)
|
||||
|
||||
TotAngMomA = TotAngMomShell(iShA)
|
||||
nShellFunctionA = (TotAngMomA*TotAngMomA + 3*TotAngMomA + 2)/2
|
||||
allocate(ShellFunctionA(1:nShellFunctionA,1:3))
|
||||
call GenerateShell(TotAngMomA,nShellFunctionA,ShellFunctionA)
|
||||
|
||||
KA = KShell(iShA)
|
||||
|
||||
do iShFA=1,nShellFunctionA
|
||||
|
||||
iBasA = iBasA + 1
|
||||
AngMomA(1) = ShellFunctionA(iShFA,1)
|
||||
AngMomA(2) = ShellFunctionA(iShFA,2)
|
||||
AngMomA(3) = ShellFunctionA(iShFA,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
do iShB=1,nShell
|
||||
|
||||
CenterB(1) = CenterShell(iShB,1)
|
||||
CenterB(2) = CenterShell(iShB,2)
|
||||
CenterB(3) = CenterShell(iShB,3)
|
||||
|
||||
TotAngMomB = TotAngMomShell(iShB)
|
||||
nShellFunctionB = (TotAngMomB*TotAngMomB + 3*TotAngMomB + 2)/2
|
||||
allocate(ShellFunctionB(1:nShellFunctionB,1:3))
|
||||
call GenerateShell(TotAngMomB,nShellFunctionB,ShellFunctionB)
|
||||
|
||||
KB = KShell(iShB)
|
||||
|
||||
do iShFB=1,nShellFunctionB
|
||||
|
||||
iBasB = iBasB + 1
|
||||
AngMomB(1) = ShellFunctionB(iShFB,1)
|
||||
AngMomB(2) = ShellFunctionB(iShFB,2)
|
||||
AngMomB(3) = ShellFunctionB(iShFB,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over nuclear centers
|
||||
!------------------------------------------------------------------------
|
||||
call cpu_time(start_cNuc)
|
||||
|
||||
cNuc = 0d0
|
||||
|
||||
do iNucC=1,NAtoms
|
||||
|
||||
CenterC(1) = XYZAtoms(iNucC,1)
|
||||
CenterC(2) = XYZAtoms(iNucC,2)
|
||||
CenterC(3) = XYZAtoms(iNucC,3)
|
||||
|
||||
ZC = ZNuc(iNucC)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over contraction degrees
|
||||
!-------------------------------------------------------------------------
|
||||
|
||||
do iKA=1,KA
|
||||
ExpA = ExpShell(iShA,iKA)
|
||||
DA = DShell(iShA,iKA)*NormCoeff(ExpA,AngMomA)
|
||||
do iKB=1,KB
|
||||
ExpB = ExpShell(iShB,iKB)
|
||||
DB = DShell(iShB,iKB)*NormCoeff(ExpB,AngMomB)
|
||||
|
||||
call NucInt(debug,npNuc,nSigpNuc, &
|
||||
ExpA,CenterA,AngMomA, &
|
||||
ExpB,CenterB,AngMomB, &
|
||||
CenterC, &
|
||||
pNuc)
|
||||
|
||||
cNuc = cNuc - DA*DB*ZC*pNuc
|
||||
|
||||
enddo
|
||||
enddo
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
call cpu_time(end_cNuc)
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over nuclear centers C
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
ncNuc = ncNuc + 1
|
||||
if(abs(cNuc) > 1d-15) then
|
||||
nSigcNuc = nSigcNuc + 1
|
||||
t_cNuc = end_cNuc - start_cNuc
|
||||
write(10,'(I6,I6,F20.15)') iBasA,iBasB,cNuc
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6)') '(a|V|b) = ',cNuc,iBasA,iBasB
|
||||
write(*,*)
|
||||
endif
|
||||
endif
|
||||
|
||||
enddo
|
||||
deallocate(ShellFunctionB)
|
||||
enddo
|
||||
iBasB = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionA)
|
||||
enddo
|
||||
iBasA = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A
|
||||
!------------------------------------------------------------------------
|
||||
write(*,*)
|
||||
|
||||
! Close files to write down integrals
|
||||
|
||||
close(unit=10)
|
||||
|
||||
end subroutine ComputeNuc
|
170
src/IntPak/ComputeOv.f90
Normal file
170
src/IntPak/ComputeOv.f90
Normal file
@ -0,0 +1,170 @@
|
||||
subroutine ComputeOv(debug,NBasis,nShell, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
npOv,nSigpOv,ncOv,nSigcOv,S)
|
||||
|
||||
|
||||
! Compute one-electron overlap integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
integer,intent(in) :: NBasis,nShell
|
||||
double precision,intent(in) :: CenterShell(maxShell,3)
|
||||
integer,intent(in) :: TotAngMomShell(maxShell),KShell(maxShell)
|
||||
double precision,intent(in) :: DShell(maxShell,maxK),ExpShell(maxShell,maxK)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: KA,KB
|
||||
double precision :: CenterA(3),CenterB(3)
|
||||
integer :: TotAngMomA,TotAngMomB
|
||||
integer :: AngMomA(3),AngMomB(3)
|
||||
integer :: nShellFunctionA,nShellFunctionB
|
||||
integer,allocatable :: ShellFunctionA(:,:),ShellFunctionB(:,:)
|
||||
double precision :: ExpA,ExpB
|
||||
double precision,allocatable :: DA,DB
|
||||
double precision :: NormCoeff
|
||||
|
||||
integer :: iBasA,iBasB
|
||||
integer :: iShA,iShB
|
||||
integer :: iShFA,iShFB
|
||||
integer :: iKA,iKB
|
||||
|
||||
double precision :: pOv,cOv
|
||||
double precision :: start_cOv,end_cOv,t_cOv
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: npOv,nSigpOv,ncOv,nSigcOv
|
||||
double precision,intent(out) :: S(NBasis,NBasis)
|
||||
|
||||
|
||||
! Compute one-electron integrals
|
||||
|
||||
write(*,*) '****************************************'
|
||||
write(*,*) ' Compute one-electron overlap integrals '
|
||||
write(*,*) '****************************************'
|
||||
write(*,*)
|
||||
|
||||
npOv = 0
|
||||
nSigpOv = 0
|
||||
|
||||
ncOv = 0
|
||||
nSigcOv = 0
|
||||
|
||||
iBasA = 0
|
||||
iBasB = 0
|
||||
|
||||
! Open file to write down integrals
|
||||
|
||||
open(unit=8,file='int/Ov.dat')
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell A
|
||||
!------------------------------------------------------------------------
|
||||
do iShA=1,nShell
|
||||
|
||||
CenterA(1) = CenterShell(iShA,1)
|
||||
CenterA(2) = CenterShell(iShA,2)
|
||||
CenterA(3) = CenterShell(iShA,3)
|
||||
|
||||
TotAngMomA = TotAngMomShell(iShA)
|
||||
nShellFunctionA = (TotAngMomA*TotAngMomA + 3*TotAngMomA + 2)/2
|
||||
allocate(ShellFunctionA(1:nShellFunctionA,1:3))
|
||||
call GenerateShell(TotAngMomA,nShellFunctionA,ShellFunctionA)
|
||||
|
||||
KA = KShell(iShA)
|
||||
|
||||
do iShFA=1,nShellFunctionA
|
||||
|
||||
iBasA = iBasA + 1
|
||||
AngMomA(1) = ShellFunctionA(iShFA,1)
|
||||
AngMomA(2) = ShellFunctionA(iShFA,2)
|
||||
AngMomA(3) = ShellFunctionA(iShFA,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
do iShB=1,nShell
|
||||
|
||||
CenterB(1) = CenterShell(iShB,1)
|
||||
CenterB(2) = CenterShell(iShB,2)
|
||||
CenterB(3) = CenterShell(iShB,3)
|
||||
|
||||
TotAngMomB = TotAngMomShell(iShB)
|
||||
nShellFunctionB = (TotAngMomB*TotAngMomB + 3*TotAngMomB + 2)/2
|
||||
allocate(ShellFunctionB(1:nShellFunctionB,1:3))
|
||||
call GenerateShell(TotAngMomB,nShellFunctionB,ShellFunctionB)
|
||||
|
||||
KB = KShell(iShB)
|
||||
|
||||
do iShFB=1,nShellFunctionB
|
||||
|
||||
iBasB = iBasB + 1
|
||||
AngMomB(1) = ShellFunctionB(iShFB,1)
|
||||
AngMomB(2) = ShellFunctionB(iShFB,2)
|
||||
AngMomB(3) = ShellFunctionB(iShFB,3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Loops over contraction degrees
|
||||
!-------------------------------------------------------------------------
|
||||
call cpu_time(start_cOv)
|
||||
|
||||
cOv = 0d0
|
||||
|
||||
do iKA=1,KA
|
||||
ExpA = ExpShell(iShA,iKA)
|
||||
DA = DShell(iShA,iKA)*NormCoeff(ExpA,AngMomA)
|
||||
do iKB=1,KB
|
||||
ExpB = ExpShell(iShB,iKB)
|
||||
DB = DShell(iShB,iKB)*NormCoeff(ExpB,AngMomB)
|
||||
|
||||
call OvInt(npOv,nSigpOv, &
|
||||
ExpA,CenterA,AngMomA, &
|
||||
ExpB,CenterB,AngMomB, &
|
||||
pOv)
|
||||
|
||||
cOv = cOv + DA*DB*pOv
|
||||
|
||||
enddo
|
||||
enddo
|
||||
call cpu_time(end_cOv)
|
||||
|
||||
ncOv = ncOv + 1
|
||||
S(iBasA,iBasB) = cOv
|
||||
if(abs(cOv) > 1d-15) then
|
||||
nSigcOv = nSigcOv + 1
|
||||
t_cOv = end_cOv - start_cOv
|
||||
write(8,'(I6,I6,F20.15)') iBasA,iBasB,cOv
|
||||
if(debug) then
|
||||
write(*,'(A10,1X,F16.10,1X,I6,1X,I6)') '(a|b) = ',cOv,iBasA,iBasB
|
||||
endif
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over contraction degrees
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionB)
|
||||
enddo
|
||||
iBasB = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell B
|
||||
!------------------------------------------------------------------------
|
||||
enddo
|
||||
deallocate(ShellFunctionA)
|
||||
enddo
|
||||
iBasA = 0
|
||||
!------------------------------------------------------------------------
|
||||
! End loops over shell A
|
||||
!------------------------------------------------------------------------
|
||||
write(*,*)
|
||||
|
||||
! Close files to write down integrals
|
||||
|
||||
close(unit=8)
|
||||
|
||||
end subroutine ComputeOv
|
174
src/IntPak/FormVRR3e.f90
Normal file
174
src/IntPak/FormVRR3e.f90
Normal file
@ -0,0 +1,174 @@
|
||||
subroutine FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
|
||||
|
||||
! Form stuff we need...
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: ExpZ(3),ExpG(3,3)
|
||||
double precision,intent(in) :: CenterZ(3,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,j,k,l
|
||||
double precision :: ZetaMat(3,3)
|
||||
double precision :: CMat(3,3),GMat(3,3)
|
||||
double precision :: Delta0Mat(3,3),Delta1Mat(3,3)
|
||||
double precision :: InvDelta0Mat(3,3),InvDelta1Mat(3,3)
|
||||
double precision :: CenterY(3,3,3)
|
||||
double precision :: YMat(3,3),Y2Mat(3,3)
|
||||
double precision :: DYMat(3,3,3),D2YMat(3,3,3,3)
|
||||
double precision :: D0Mat(3,3),D1Mat(3,3)
|
||||
|
||||
double precision :: KappaCross
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: DY0(3),DY1(3),D2Y0(3,3),D2Y1(3,3)
|
||||
double precision,intent(out) :: delta0,delta1,Y0,Y1
|
||||
|
||||
! Initalize arrays
|
||||
|
||||
ZetaMat = 0d0
|
||||
CMat = 0d0
|
||||
GMat = 0d0
|
||||
YMat = 0d0
|
||||
Y2Mat = 0d0
|
||||
D0Mat = 0d0
|
||||
D1Mat = 0d0
|
||||
|
||||
! Form the zeta matrix Eq. (15a)
|
||||
|
||||
do i=1,3
|
||||
ZetaMat(i,i) = ExpZ(i)
|
||||
enddo
|
||||
|
||||
! print*,'Zeta'
|
||||
! call matout(3,3,ZetaMat)
|
||||
|
||||
! Form the C matrix Eq. (15a)
|
||||
|
||||
CMat(1,1) = 1d0
|
||||
CMat(2,2) = 1d0
|
||||
CMat(1,2) = -1d0
|
||||
CMat(2,1) = -1d0
|
||||
|
||||
! print*,'C'
|
||||
! call matout(3,3,CMat)
|
||||
|
||||
! Form the G matrix Eq. (15b)
|
||||
|
||||
do i=1,3
|
||||
do j=1,i-1
|
||||
GMat(i,j) = - ExpG(j,i)
|
||||
enddo
|
||||
do j=i+1,3
|
||||
GMat(i,j) = - ExpG(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i=1,3
|
||||
do j=1,i-1
|
||||
GMat(i,i) = GMat(i,i) + ExpG(j,i)
|
||||
enddo
|
||||
do j=i+1,3
|
||||
GMat(i,i) = GMat(i,i) + ExpG(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! print*,'G'
|
||||
! call matout(3,3,GMat)
|
||||
|
||||
! Form the Y and Y^2 matrices Eq. (16b)
|
||||
|
||||
do i=1,3
|
||||
do j=i+1,3
|
||||
do k=1,3
|
||||
CenterY(i,j,k) = CenterZ(i,k) - CenterZ(j,k)
|
||||
Y2Mat(i,j) = Y2Mat(i,j) + CenterY(i,j,k)**2
|
||||
enddo
|
||||
YMat(i,j) = sqrt(Y2Mat(i,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! print*,'Y'
|
||||
! call matout(3,3,YMat)
|
||||
|
||||
! print*,'Y2'
|
||||
! call matout(3,3,Y2Mat)
|
||||
|
||||
! Form the delta0 and delta1 matrices Eq. (14)
|
||||
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
Delta0Mat(i,j) = ZetaMat(i,j) + GMat(i,j)
|
||||
Delta1Mat(i,j) = Delta0Mat(i,j) + CMat(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Form the DY and D2Y matrices
|
||||
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
do k=1,3
|
||||
DYMat(i,j,k) = KappaCross(i,j,k)*YMat(j,k)/ExpZ(i)
|
||||
do l=1,3
|
||||
D2YMat(i,j,k,l) = 0.5d0*KappaCross(i,k,l)*KappaCross(j,k,l)/(ExpZ(i)*ExpZ(j))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Compute the inverse of the Delta0 and Delta1 matrices
|
||||
|
||||
! InvDelta0Mat = Delta0Mat
|
||||
! InvDelta1Mat = Delta1Mat
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
InvDelta0Mat(i,j) = Delta0Mat(i,j)
|
||||
InvDelta1Mat(i,j) = Delta1Mat(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! call amove(3,3,Delta0Mat,InvDelta0Mat)
|
||||
! call amove(3,3,Delta1Mat,InvDelta1Mat)
|
||||
|
||||
call CalcInv3(InvDelta0Mat,delta0)
|
||||
call CalcInv3(InvDelta1Mat,delta1)
|
||||
|
||||
! call matout(3,3,InvDelta0Mat)
|
||||
! call matout(3,3,InvDelta1Mat)
|
||||
! print*, 'delta0,delta1 = ',delta0,delta1
|
||||
|
||||
! Form the Delta matrix Eq. (16a)
|
||||
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
do k=1,3
|
||||
do l=1,3
|
||||
D0Mat(i,j) = D0Mat(i,k) + ZetaMat(i,k)*InvDelta0Mat(k,l)*ZetaMat(l,j)
|
||||
D1Mat(i,j) = D1Mat(i,k) + ZetaMat(i,k)*InvDelta1Mat(k,l)*ZetaMat(l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Form the derivative matrices
|
||||
|
||||
do i=1,3
|
||||
call CalcTrAB(3,D0Mat,D2YMat,DY0(i))
|
||||
call CalcTrAB(3,D1Mat,D2YMat,DY1(i))
|
||||
do j=1,3
|
||||
call CalcTrAB(3,D0Mat,D2YMat,D2Y0(i,j))
|
||||
call CalcTrAB(3,D1Mat,D2YMat,D2Y1(i,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Compute Y0 and Y1
|
||||
|
||||
call CalcTrAB(3,D0Mat,Y2Mat,Y0)
|
||||
call CalcTrAB(3,D1Mat,Y2Mat,Y1)
|
||||
|
||||
end subroutine FormVRR3e
|
140
src/IntPak/G2eInt.f90
Normal file
140
src/IntPak/G2eInt.f90
Normal file
@ -0,0 +1,140 @@
|
||||
function G2eInt(debug,iType, &
|
||||
ExpG, &
|
||||
ExpBra,CenterBra,AngMomBra, &
|
||||
ExpKet,CenterKet,AngMomKet)
|
||||
|
||||
! Compute recursively the primitive two-electron integral [ab|cd]
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
integer,intent(in) :: iType
|
||||
double precision,intent(in) :: ExpBra(2),ExpKet(2)
|
||||
double precision,intent(in) :: ExpG
|
||||
double precision,intent(in) :: CenterBra(2,3),CenterKet(2,3)
|
||||
integer,intent(in) :: AngMomBra(2,3),AngMomKet(2,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: TotAngMomBra(3),TotAngMomKet(3)
|
||||
double precision :: ExpZi(2),ExpY(2,2)
|
||||
double precision :: CenterZ(2,3),CenterAB(2,3),CenterZA(2,3),CenterY(2,2,3)
|
||||
double precision :: NormABSq(2),NormYSq(2,2)
|
||||
double precision :: GAB(2)
|
||||
double precision,allocatable :: Om(:)
|
||||
double precision :: fG
|
||||
double precision :: HRR2e,VRR2e
|
||||
double precision :: a1a2b1b2
|
||||
|
||||
integer :: i,j,k,maxm
|
||||
double precision :: start_Om,finish_Om,start_RR,finish_RR,t_Om,t_RR
|
||||
|
||||
! Output variables
|
||||
double precision :: G2eInt
|
||||
|
||||
! Pre-computed shell-pair quantities
|
||||
|
||||
do i=1,2
|
||||
ExpZi(i) = 1d0/(ExpBra(i) + ExpKet(i))
|
||||
enddo
|
||||
|
||||
NormABSq = 0d0
|
||||
do j=1,3
|
||||
do i=1,2
|
||||
CenterZ(i,j) = (ExpBra(i)*CenterBra(i,j) + ExpKet(i)*CenterKet(i,j))*ExpZi(i)
|
||||
CenterAB(i,j) = CenterBra(i,j) - CenterKet(i,j)
|
||||
CenterZA(i,j) = CenterZ(i,j) - CenterBra(i,j)
|
||||
NormABSq(i) = NormABSq(i) + CenterAB(i,j)**2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i=1,2
|
||||
GAB(i) = (pi*ExpZi(i))**(1.5d0)*exp(-ExpBra(i)*ExpKet(i)*NormABSq(i)*ExpZi(i))
|
||||
enddo
|
||||
|
||||
! Pre-computed shell-quartet quantities
|
||||
|
||||
do i=1,2
|
||||
do j=1,2
|
||||
ExpY(i,j) = 1d0/(ExpZi(i) + ExpZi(j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i=1,2
|
||||
do j=1,2
|
||||
NormYSq(i,j) = 0d0
|
||||
do k=1,3
|
||||
CenterY(i,j,k) = CenterZ(i,k) - CenterZ(j,k)
|
||||
NormYSq(i,j) = NormYSq(i,j) + CenterY(i,j,k)**2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! fG = (ExpZ(1)*ExpZ(2)*ExpG)/(ExpZ(1)*ExpZ(2) + ExpZ(1)*ExpG + ExpZ(2)*ExpG)
|
||||
fG = 1d0/(ExpZi(1) + 1d0/ExpG + ExpZi(2))
|
||||
|
||||
! Total angular momemtum
|
||||
|
||||
maxm = 0
|
||||
do i=1,2
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
TotAngMomKet(i) = AngMomKet(i,1) + AngMomKet(i,2) + AngMomKet(i,3)
|
||||
maxm = maxm + TotAngMomBra(i) + TotAngMomKet(i)
|
||||
enddo
|
||||
|
||||
! Pre-compute (00|00)^m
|
||||
|
||||
allocate(Om(0:maxm))
|
||||
call cpu_time(start_Om)
|
||||
|
||||
if(iType == 1) then
|
||||
call CalcOmERI(maxm,ExpY(1,2),NormYSq(1,2),Om)
|
||||
elseif(iType == 3) then
|
||||
call CalcOmYuk(maxm,ExpG,ExpY(1,2),fG,NormYSq(1,2),Om)
|
||||
elseif(iType == 4) then
|
||||
call CalcOmErf(maxm,ExpY(1,2),fG,NormYSq(1,2),Om)
|
||||
endif
|
||||
|
||||
call cpu_time(finish_Om)
|
||||
|
||||
! Print (00|00)^m
|
||||
|
||||
if(debug) then
|
||||
write(*,*) '(00|00)^m'
|
||||
do i=0,maxm
|
||||
write(*,*) i,Om(i)
|
||||
enddo
|
||||
write(*,*)
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Launch reccurence relations!
|
||||
!------------------------------------------------------------------------
|
||||
call cpu_time(start_RR)
|
||||
|
||||
if(TotAngMomKet(1) == 0 .and. TotAngMomKet(2) == 0) then
|
||||
if(TotAngMomBra(1) == 0 .and. TotAngMomBra(2) == 0) then
|
||||
a1a2b1b2 = Om(0)
|
||||
else
|
||||
a1a2b1b2 = VRR2e(0,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY)
|
||||
endif
|
||||
else
|
||||
a1a2b1b2 = HRR2e(AngMomBra,AngMomKet,maxm,Om,ExpZi,ExpY,CenterAB,CenterZA,CenterY)
|
||||
endif
|
||||
|
||||
call cpu_time(finish_RR)
|
||||
|
||||
! Timings
|
||||
|
||||
t_Om = finish_Om - start_Om
|
||||
t_RR = finish_RR - start_RR
|
||||
|
||||
! Print result
|
||||
|
||||
G2eInt = GAB(1)*GAB(2)*a1a2b1b2
|
||||
|
||||
end function G2eInt
|
124
src/IntPak/G3eInt.f90
Normal file
124
src/IntPak/G3eInt.f90
Normal file
@ -0,0 +1,124 @@
|
||||
function G3eInt(debug,iType, &
|
||||
ExpG13,ExpG23, &
|
||||
ExpBra,CenterBra,AngMomBra, &
|
||||
ExpKet,CenterKet,AngMomKet)
|
||||
|
||||
! Compute two-electron integrals over the Yukawa operator
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
integer,intent(in) :: iType
|
||||
double precision,intent(in) :: ExpG13,ExpG23
|
||||
double precision,intent(in) :: ExpBra(3),ExpKet(3)
|
||||
double precision,intent(in) :: CenterBra(3,3),CenterKet(3,3)
|
||||
integer,intent(in) :: AngMomBra(3,3),AngMomKet(3,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: ExpG(3,3)
|
||||
integer :: TotAngMomBra(3),TotAngMomKet(3)
|
||||
double precision :: ExpZ(3)
|
||||
double precision :: CenterZ(3,3),CenterAB(3,3),CenterZA(3,3)
|
||||
double precision :: NormABSq(3)
|
||||
double precision :: GAB(3)
|
||||
double precision,allocatable :: Om(:)
|
||||
double precision :: HRR3e,VRR3e
|
||||
|
||||
double precision :: DY0(3),DY1(3),D2Y0(3,3),D2Y1(3,3)
|
||||
double precision :: delta0,delta1,Y0,Y1
|
||||
|
||||
integer :: i,j,maxm
|
||||
double precision :: start_Om,finish_Om,t_Om,start_RR,finish_RR,t_RR
|
||||
double precision :: a1a2a3b1b2b3
|
||||
|
||||
! Output variables
|
||||
double precision :: G3eInt
|
||||
|
||||
! Gaussian geminal exponents
|
||||
|
||||
ExpG = 0d0
|
||||
ExpG(1,3) = ExpG13
|
||||
ExpG(2,3) = ExpG23
|
||||
|
||||
! Pre-computed quantities for shell-pair
|
||||
|
||||
do i=1,3
|
||||
ExpZ(i) = ExpBra(i) + ExpKet(i)
|
||||
enddo
|
||||
|
||||
NormABSq = 0d0
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
CenterZ(i,j) = (ExpBra(i)*CenterBra(i,j) + ExpKet(i)*CenterKet(i,j))/ExpZ(i)
|
||||
CenterAB(i,j) = CenterBra(i,j) - CenterKet(i,j)
|
||||
CenterZA(i,j) = CenterZ(i,j) - CenterBra(i,j)
|
||||
NormABSq(i) = NormABSq(i) + CenterAB(i,j)**2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i=1,3
|
||||
GAB(i) = (pi/ExpZ(i))**(1.5d0)*exp(-ExpBra(i)*ExpKet(i)*NormABSq(i)/ExpZ(i))
|
||||
enddo
|
||||
|
||||
! Pre-computed shell-sextet quantities
|
||||
|
||||
call FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
|
||||
|
||||
! Total angular momemtum
|
||||
|
||||
maxm = 0
|
||||
do i=1,3
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
TotAngMomKet(i) = AngMomKet(i,1) + AngMomKet(i,2) + AngMomKet(i,3)
|
||||
maxm = maxm + TotAngMomBra(i) + TotAngMomKet(i)
|
||||
enddo
|
||||
|
||||
! Pre-compute (000|000)^m
|
||||
|
||||
allocate(Om(0:maxm))
|
||||
call cpu_time(start_Om)
|
||||
call CalcOm3e(maxm,delta0,delta1,Y0,Y1,Om)
|
||||
call cpu_time(finish_Om)
|
||||
|
||||
! Print (000|000)^m
|
||||
|
||||
if(.false.) then
|
||||
write(*,*) '(000|000)^m'
|
||||
do i=0,maxm
|
||||
write(*,*) i,Om(i)
|
||||
enddo
|
||||
write(*,*)
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Launch reccurence relations!
|
||||
!------------------------------------------------------------------------
|
||||
call cpu_time(start_RR)
|
||||
if(TotAngMomKet(1) == 0 .and. TotAngMomKet(2) == 0 .and. TotAngMomKet(3) == 0) then
|
||||
if(TotAngMomBra(1) == 0 .and. TotAngMomBra(2) == 0 .and. TotAngMomBra(3) == 0) then
|
||||
a1a2a3b1b2b3 = Om(0)
|
||||
else
|
||||
a1a2a3b1b2b3 = VRR3e(0,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
else
|
||||
a1a2a3b1b2b3 = HRR3e(AngMomBra,AngMomKet,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
|
||||
|
||||
call cpu_time(finish_RR)
|
||||
|
||||
! Timings
|
||||
|
||||
t_Om = finish_Om - start_Om
|
||||
t_RR = finish_RR - start_RR
|
||||
|
||||
! Print result
|
||||
|
||||
G3eInt = GAB(1)*GAB(2)*GAB(3)*a1a2a3b1b2b3
|
||||
|
||||
end function G3eInt
|
107
src/IntPak/GF12Int.f90
Normal file
107
src/IntPak/GF12Int.f90
Normal file
@ -0,0 +1,107 @@
|
||||
function GF12Int(ExpG,ExpA,CenterA,AngMomA,ExpB,CenterB,AngMomB,ExpC,CenterC,AngMomC,ExpD,CenterD,AngMomD)
|
||||
|
||||
! Compute two-electron integrals over Gaussian geminals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: ExpG
|
||||
double precision,intent(in) :: ExpA,ExpB,ExpC,ExpD
|
||||
double precision,intent(in) :: CenterA(3),CenterB(3),CenterC(3),CenterD(3)
|
||||
integer,intent(in) :: AngMomA(3),AngMomB(3),AngMomC(3),AngMomD(3)
|
||||
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: ExpAi,ExpBi,ExpCi,ExpDi,ExpGi
|
||||
double precision :: ExpP,ExpQ,ExpPi,ExpQi,ExpPGQi
|
||||
double precision :: CenterP(3),CenterQ(3),CenterAB(3),CenterCD(3),CenterPQSq(3),CenterRA(3),CenterRC(3)
|
||||
double precision :: NormABSq,NormCDSq
|
||||
double precision :: GAB,GCD
|
||||
double precision :: fP,fG,fQ,gP,gG,gQ
|
||||
double precision :: HRRF12
|
||||
|
||||
integer :: i
|
||||
double precision :: pi
|
||||
double precision :: start_RR,finish_RR,t_RR
|
||||
double precision :: Gabcd(3)
|
||||
|
||||
! Output variables
|
||||
double precision :: GF12Int
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! Pre-computed shell quantities
|
||||
|
||||
ExpAi = 1d0/ExpA
|
||||
ExpBi = 1d0/ExpB
|
||||
ExpCi = 1d0/ExpC
|
||||
ExpDi = 1d0/ExpD
|
||||
ExpGi = 1d0/ExpG
|
||||
|
||||
! Pre-computed quantities for shell-pair AB
|
||||
|
||||
ExpP = ExpA + ExpB
|
||||
ExpPi = 1d0/ExpP
|
||||
|
||||
NormABSq = 0d0
|
||||
Do i=1,3
|
||||
CenterP(i) = (ExpA*CenterA(i) + ExpB*CenterB(i))*ExpPi
|
||||
CenterAB(i) = CenterA(i) - CenterB(i)
|
||||
NormABSq = NormABSq + CenterAB(i)**2
|
||||
Enddo
|
||||
|
||||
GAB = (pi*ExpPi)**(1.5d0)*exp(-NormABSq/(ExpAi+ExpBi))
|
||||
|
||||
! Pre-computed quantities for shell-pair CD
|
||||
|
||||
ExpQ = ExpC + ExpD
|
||||
ExpQi = 1d0/ExpQ
|
||||
|
||||
NormCDSq = 0d0
|
||||
Do i=1,3
|
||||
CenterQ(i) = (ExpC*CenterC(i) + ExpD*CenterD(i))*ExpQi
|
||||
CenterCD(i) = CenterC(i) - CenterD(i)
|
||||
NormCDSq = NormCDSq + CenterCD(i)**2
|
||||
Enddo
|
||||
|
||||
GCD = (pi*ExpQi)**(1.5d0)*exp(-NormCDSq/(ExpCi+ExpDi))
|
||||
|
||||
! Pre-computed shell-quartet quantities
|
||||
|
||||
ExpPGQi = ExpPi + ExpGi + ExpQi
|
||||
|
||||
Do i=1,3
|
||||
CenterPQSq(i) = (CenterP(i) - CenterQ(i))**2
|
||||
Enddo
|
||||
|
||||
fP = ExpPi/ExpPGQi
|
||||
fG = ExpGi/ExpPGQi
|
||||
fQ = ExpQi/ExpPGQi
|
||||
|
||||
gP = (1d0 - fP)*0.5d0*ExpPi
|
||||
gG = fP*0.5d0*expQi
|
||||
gQ = (1d0 - fQ)*0.5d0*ExpQi
|
||||
|
||||
do i=1,3
|
||||
CenterRA(i) = CenterP(i) - CenterA(i) + fP*(CenterQ(i) - CenterP(i))
|
||||
CenterRC(i) = CenterQ(i) - CenterC(i) + fQ*(CenterP(i) - CenterQ(i))
|
||||
enddo
|
||||
!------------------------------------------------------------------------
|
||||
! Launch reccurence relations!
|
||||
!------------------------------------------------------------------------
|
||||
call cpu_time(start_RR)
|
||||
! Loop over cartesian directions
|
||||
Do i=1,3
|
||||
Gabcd(i) = HRRF12(AngMomA(i),AngMomB(i),AngMomC(i),AngMomD(i),fG,gP,gG,gQ,ExpPGQi, &
|
||||
CenterPQSq(i),CenterRA(i),CenterRC(i),CenterAB(i),CenterCD(i))
|
||||
Enddo
|
||||
call cpu_time(finish_RR)
|
||||
|
||||
! Print result
|
||||
|
||||
GF12Int = GAB*GCD*Gabcd(1)*Gabcd(2)*Gabcd(3)
|
||||
t_RR = finish_RR - start_RR
|
||||
|
||||
end function GF12Int
|
30
src/IntPak/GenerateShell.f90
Normal file
30
src/IntPak/GenerateShell.f90
Normal file
@ -0,0 +1,30 @@
|
||||
subroutine GenerateShell(atot,nShellFunction,ShellFunction)
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: atot,nShellFunction
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: ax,ay,az,ia
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: ShellFunction(nShellFunction,3)
|
||||
|
||||
ia = 0
|
||||
do ax=atot,0,-1
|
||||
do az=0,atot
|
||||
ay = atot - ax - az
|
||||
if(ay >= 0) then
|
||||
ia = ia + 1
|
||||
ShellFunction(ia,1) = ax
|
||||
ShellFunction(ia,2) = ay
|
||||
ShellFunction(ia,3) = az
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine GenerateShell
|
101
src/IntPak/HRR2e.f90
Normal file
101
src/IntPak/HRR2e.f90
Normal file
@ -0,0 +1,101 @@
|
||||
recursive function HRR2e(AngMomBra,AngMomKet, &
|
||||
maxm,Om,ExpZi,ExpY, &
|
||||
CenterAB,CenterZA,CenterY) &
|
||||
result(a1a2b1b2)
|
||||
|
||||
! Horintal recurrence relations for two-electron integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: AngMomBra(2,3),AngMomKet(2,3)
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: Om(0:maxm),ExpZi(2),ExpY(2,2)
|
||||
double precision,intent(in) :: CenterAB(2,3),CenterZA(2,3),CenterY(2,2,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: NegAngMomKet(2)
|
||||
integer :: TotAngMomBra(2),TotAngMomKet(2)
|
||||
integer :: a1p(2,3),b1m(2,3),a2p(2,3),b2m(2,3)
|
||||
integer :: i,j,xyz
|
||||
double precision :: VRR2e
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: a1a2b1b2
|
||||
|
||||
do i=1,2
|
||||
NegAngMomKet(i) = AngMomKet(i,1) < 0 .or. AngMomKet(i,2) < 0 .or. AngMomKet(i,3) < 0
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
TotAngMomKet(i) = AngMomKet(i,1) + AngMomKet(i,2) + AngMomKet(i,3)
|
||||
enddo
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Termination condition
|
||||
!------------------------------------------------------------------------
|
||||
! if(NegAngMomKet(1) .or. NegAngMomKet(2)) then
|
||||
! a1a2b1b2 = 0d0
|
||||
!------------------------------------------------------------------------
|
||||
! 1st and 2nd vertical recurrence relations: <a1a2|00>
|
||||
!------------------------------------------------------------------------
|
||||
! elseif(TotAngMomKet(1) == 0 .and. TotAngMomKet(2) == 0) then
|
||||
if(TotAngMomKet(1) == 0 .and. TotAngMomKet(2) == 0) then
|
||||
a1a2b1b2 = VRR2e(0,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY)
|
||||
!------------------------------------------------------------------------
|
||||
! 1st horizontal recurrence relation (2 terms): <a1a2|b1+0>
|
||||
!------------------------------------------------------------------------
|
||||
elseif(TotAngMomKet(2) == 0) then
|
||||
do i=1,2
|
||||
do j=1,3
|
||||
a1p(i,j) = AngMomBra(i,j)
|
||||
b1m(i,j) = AngMomKet(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomKet(1,1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomKet(1,2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomKet(1,3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRR2e!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
a1p(1,xyz) = a1p(1,xyz) + 1
|
||||
b1m(1,xyz) = b1m(1,xyz) - 1
|
||||
a1a2b1b2 = HRR2e(a1p,b1m,maxm,Om,ExpZi,ExpY,CenterAB,CenterZA,CenterY) &
|
||||
+ CenterAB(1,xyz)*HRR2e(AngMomBra,b1m,maxm,Om,ExpZi,ExpY,CenterAB,CenterZA,CenterY)
|
||||
!------------------------------------------------------------------------
|
||||
! 2nd horizontal recurrence relation (2 terms): <a1a2|b1b2+>
|
||||
!------------------------------------------------------------------------
|
||||
else
|
||||
do i=1,2
|
||||
do j=1,3
|
||||
a2p(i,j) = AngMomBra(i,j)
|
||||
b2m(i,j) = AngMomKet(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomKet(2,1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomKet(2,2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomKet(2,3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRR2e!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
a2p(2,xyz) = a2p(2,xyz) + 1
|
||||
b2m(2,xyz) = b2m(2,xyz) - 1
|
||||
a1a2b1b2 = HRR2e(a2p,b2m,maxm,Om,ExpZi,ExpY,CenterAB,CenterZA,CenterY) &
|
||||
+ CenterAB(2,xyz)*HRR2e(AngMomBra,b2m,maxm,Om,ExpZi,ExpY,CenterAB,CenterZA,CenterY)
|
||||
endif
|
||||
|
||||
end function HRR2e
|
128
src/IntPak/HRR3e.f90
Normal file
128
src/IntPak/HRR3e.f90
Normal file
@ -0,0 +1,128 @@
|
||||
recursive function HRR3e(AngMomBra,AngMomKet,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
result(a1a2a3b1b2b3)
|
||||
|
||||
! Horizontal recurrence relations for three-electron integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: AngMomBra(3,3),AngMomKet(3,3)
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: Om(0:maxm),ExpZ(3),CenterAB(3,3),CenterZA(3,3)
|
||||
double precision,intent(in) :: DY0(3),DY1(3),D2Y0(3,3),D2Y1(3,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: NegAngMomKet(3)
|
||||
integer :: TotAngMomBra(3),TotAngMomKet(3)
|
||||
integer :: a1p(3,3),b1m(3,3),a2p(3,3),b2m(3,3),a3p(3,3),b3m(3,3)
|
||||
integer :: i,j,xyz
|
||||
double precision :: VRR3e
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: a1a2a3b1b2b3
|
||||
|
||||
do i=1,3
|
||||
NegAngMomKet(i) = AngMomKet(i,1) < 0 .or. AngMomKet(i,2) < 0 .or. AngMomKet(i,3) < 0
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
TotAngMomKet(i) = AngMomKet(i,1) + AngMomKet(i,2) + AngMomKet(i,3)
|
||||
enddo
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Termination condition
|
||||
!------------------------------------------------------------------------
|
||||
if(NegAngMomKet(1) .or. NegAngMomKet(2) .or. NegAngMomKet(3)) then
|
||||
a1a2a3b1b2b3 = 0d0
|
||||
!------------------------------------------------------------------------
|
||||
! 1st and 2nd vertical recurrence relations: <a1a2a3|000>
|
||||
!------------------------------------------------------------------------
|
||||
elseif(TotAngMomKet(1) == 0 .and. TotAngMomKet(2) == 0 .and. TotAngMomKet(3) == 0) then
|
||||
a1a2a3b1b2b3 = VRR3e(0,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
!------------------------------------------------------------------------
|
||||
! 1st horizontal recurrence relation (2 terms): <a1a2a3|b1+00>
|
||||
!------------------------------------------------------------------------
|
||||
elseif(TotAngMomKet(2) == 0 .and. TotAngMomKet(3) == 0) then
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
a1p(i,j) = AngMomBra(i,j)
|
||||
b1m(i,j) = AngMomKet(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomKet(1,1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomKet(1,2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomKet(1,3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRR3e!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
a1p(1,xyz) = a1p(1,xyz) + 1
|
||||
b1m(1,xyz) = b1m(1,xyz) - 1
|
||||
a1a2a3b1b2b3 = HRR3e(a1p,b1m,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
+ CenterAB(1,xyz)* &
|
||||
HRR3e(AngMomBra,b1m,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
!------------------------------------------------------------------------
|
||||
! 2nd horizontal recurrence relation (2 terms): <a1a2a3|b1b2+0>
|
||||
!------------------------------------------------------------------------
|
||||
elseif(TotAngMomKet(3) == 0) then
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
a2p(i,j) = AngMomBra(i,j)
|
||||
b2m(i,j) = AngMomKet(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomKet(2,1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomKet(2,2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomKet(2,3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRR3e!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
a2p(2,xyz) = a2p(2,xyz) + 1
|
||||
b2m(2,xyz) = b2m(2,xyz) - 1
|
||||
a1a2a3b1b2b3 = HRR3e(a2p,b2m,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
+ CenterAB(2,xyz)* &
|
||||
HRR3e(AngMomBra,b2m,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
!------------------------------------------------------------------------
|
||||
! 3rd horizontal recurrence relation (2 terms): <a1a2a3|b1b2b3+>
|
||||
!------------------------------------------------------------------------
|
||||
else
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
a3p(i,j) = AngMomBra(i,j)
|
||||
b3m(i,j) = AngMomKet(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomKet(3,1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomKet(3,2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomKet(3,3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRR3e!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
a3p(3,xyz) = a3p(3,xyz) + 1
|
||||
b3m(3,xyz) = b3m(3,xyz) - 1
|
||||
a1a2a3b1b2b3 = HRR3e(a3p,b3m,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
+ CenterAB(3,xyz)* &
|
||||
HRR3e(AngMomBra,b3m,maxm,Om,ExpZ,CenterAB,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
|
||||
end function HRR3e
|
40
src/IntPak/HRRF12.f90
Normal file
40
src/IntPak/HRRF12.f90
Normal file
@ -0,0 +1,40 @@
|
||||
recursive function HRRF12(AngMomA,AngMomB,AngMomC,AngMomD,fG,gP,gG,gQ,ExpPGQi, &
|
||||
CenterPQSq,CenterRA,CenterRC,CenterAB,CenterCD) &
|
||||
result(Gabcd)
|
||||
|
||||
! Compute two-electron integrals over Gaussian geminals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
integer,intent(in) :: AngMomA,AngMomB,AngMomC,AngMomD
|
||||
double precision,intent(in) :: ExpPGQi
|
||||
double precision,intent(in) :: fG,gP,gG,gQ
|
||||
double precision,intent(in) :: CenterPQSq,CenterRA,CenterRC
|
||||
double precision,intent(in) :: CenterAB,CenterCD
|
||||
|
||||
! Local variables
|
||||
double precision :: VRRF12
|
||||
double precision :: Gabcd
|
||||
|
||||
If(AngMomB < 0 .or. AngMomD < 0) then
|
||||
Gabcd = 0d0
|
||||
Else
|
||||
If(AngMomB == 0 .and. AngMomD == 0) then
|
||||
Gabcd = VRRF12(AngMomA,AngMomC,fG,gP,gG,gQ,ExpPGQi,CenterPQSq,CenterRA,CenterRC)
|
||||
Else
|
||||
If(AngMomD == 0) then
|
||||
Gabcd = HRRF12(AngMomA+1,AngMomB-1,AngMomC,AngMomD,fG,gP,gG,gQ,ExpPGQi, &
|
||||
CenterPQSq,CenterRA,CenterRC,CenterAB,CenterCD) &
|
||||
+ CenterAB*HRRF12(AngMomA,AngMomB-1,AngMomC,AngMomD,fG,gP,gG,gQ, &
|
||||
ExpPGQi,CenterPQSq,CenterRA,CenterRC,CenterAB,CenterCD)
|
||||
Else
|
||||
Gabcd = HRRF12(AngMomA,AngMomB,AngMomC+1,AngMomD-1,fG,gP,gG,gQ,ExpPGQi, &
|
||||
CenterPQSq,CenterRA,CenterRC,CenterAB,CenterCD) &
|
||||
+ CenterCD*HRRF12(AngMomA,AngMomB,AngMomC,AngMomD-1,fG,gP,gG,gQ, &
|
||||
ExpPGQi,CenterPQSq,CenterRA,CenterRC,CenterAB,CenterCD)
|
||||
EndIf
|
||||
EndIf
|
||||
EndIf
|
||||
|
||||
end function HRRF12
|
71
src/IntPak/HRRNuc.f90
Normal file
71
src/IntPak/HRRNuc.f90
Normal file
@ -0,0 +1,71 @@
|
||||
recursive function HRRNuc(AngMomA,AngMomB,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
result(Gab)
|
||||
|
||||
! Horizontal recurrence relation for one-electron nuclear attraction integrals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: AngMomA(3),AngMomB(3)
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: Om(0:maxm)
|
||||
double precision,intent(in) :: ExpPi
|
||||
double precision,intent(in) :: CenterAB(3),CenterPA(3),CenterPC(3)
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: NegAngMomB
|
||||
integer :: TotAngMomA,TotAngMomB
|
||||
integer :: xyz,ap(3),bm(3)
|
||||
integer :: i
|
||||
double precision :: VRRNuc
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Gab
|
||||
|
||||
NegAngMomB = AngMomB(1) < 0 .or. AngMomB(2) < 0 .or. AngMomB(3) < 0
|
||||
|
||||
TotAngMomA = AngMomA(1) + AngMomA(2) + AngMomA(3)
|
||||
TotAngMomB = AngMomB(1) + AngMomB(2) + AngMomB(3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Termination condition
|
||||
!------------------------------------------------------------------------
|
||||
if(NegAngMomB) then
|
||||
Gab = 0d0
|
||||
else
|
||||
!------------------------------------------------------------------------
|
||||
! Vertical recurrence relations: (a|0)
|
||||
!------------------------------------------------------------------------
|
||||
if(TotAngMomB == 0) then
|
||||
Gab = VRRNuc(0,AngMomA,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC)
|
||||
else
|
||||
!------------------------------------------------------------------------
|
||||
! 1st horizontal recurrence relation (2 terms): (a|b+)
|
||||
!------------------------------------------------------------------------
|
||||
do i=1,3
|
||||
ap(i) = AngMomA(i)
|
||||
bm(i) = AngMomB(i)
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomB(1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomB(2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomB(3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in HRRNuc!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
ap(xyz) = ap(xyz) + 1
|
||||
bm(xyz) = bm(xyz) - 1
|
||||
Gab = HRRNuc(ap,bm,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
+ CenterAB(xyz)*HRRNuc(AngMomA,bm,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC)
|
||||
endif
|
||||
endif
|
||||
|
||||
end function HRRNuc
|
28
src/IntPak/HRROv.f90
Normal file
28
src/IntPak/HRROv.f90
Normal file
@ -0,0 +1,28 @@
|
||||
recursive function HRROv(AngMomA,AngMomB,ExpPi,CenterAB,CenterPA) &
|
||||
result(Gab)
|
||||
|
||||
! Horizontal recurrence relations for one-electron overlap integrals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
integer,intent(in) :: AngMomA,AngMomB
|
||||
double precision,intent(in) :: ExpPi
|
||||
double precision,intent(in) :: CenterAB,CenterPA
|
||||
|
||||
! Local variables
|
||||
double precision :: VRROv
|
||||
double precision :: Gab
|
||||
|
||||
if(AngMomB < 0) then
|
||||
Gab = 0d0
|
||||
else
|
||||
if(AngMomB == 0) then
|
||||
Gab = VRROv(AngMomA,ExpPi,CenterPA)
|
||||
else
|
||||
Gab = HRROv(AngMomA+1,AngMomB-1,ExpPi,CenterAB,CenterPA) &
|
||||
+ CenterAB*HRROv(AngMomA,AngMomB-1,ExpPi,CenterAB,CenterPA)
|
||||
endif
|
||||
endif
|
||||
|
||||
end function HRROv
|
555
src/IntPak/IntPak.f90
Normal file
555
src/IntPak/IntPak.f90
Normal file
@ -0,0 +1,555 @@
|
||||
program IntPak
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
logical :: debug
|
||||
logical :: doOv,doKin,doNuc,doERI,doF12,doYuk,doErf
|
||||
logical :: do3eInt(n3eInt),do4eInt(n4eInt)
|
||||
integer :: NAtoms,NBasis,iType
|
||||
double precision :: ExpS
|
||||
integer :: KG
|
||||
double precision,allocatable :: DG(:),ExpG(:)
|
||||
double precision,allocatable :: ZNuc(:),XYZAtoms(:,:)
|
||||
|
||||
integer :: nShell
|
||||
integer,allocatable :: TotAngMomShell(:),KShell(:)
|
||||
double precision,allocatable :: CenterShell(:,:),DShell(:,:),ExpShell(:,:)
|
||||
|
||||
double precision :: start_1eInt(n1eInt),end_1eInt(n1eInt),t_1eInt(n1eInt)
|
||||
double precision :: start_2eInt(n2eInt),end_2eInt(n2eInt),t_2eInt(n2eInt)
|
||||
double precision :: start_3eInt(n3eInt),end_3eInt(n3eInt),t_3eInt(n3eInt)
|
||||
double precision :: start_4eInt(n4eInt),end_4eInt(n4eInt),t_4eInt(n4eInt)
|
||||
|
||||
integer :: np1eInt(n1eInt),nSigp1eInt(n1eInt),nc1eInt(n1eInt),nSigc1eInt(n1eInt)
|
||||
integer :: np2eInt(n2eInt),nSigp2eInt(n2eInt),nc2eInt(n2eInt),nSigc2eInt(n2eInt)
|
||||
integer :: np3eInt(n3eInt),nSigp3eInt(n3eInt),nc3eInt(n3eInt),nSigc3eInt(n3eInt)
|
||||
integer :: np4eInt(n4eInt),nSigp4eInt(n4eInt),nc4eInt(n4eInt),nSigc4eInt(n4eInt)
|
||||
|
||||
double precision,allocatable :: S(:,:)
|
||||
|
||||
|
||||
! Hello World
|
||||
|
||||
write(*,*)
|
||||
write(*,*) '********************************'
|
||||
write(*,*) '* IntPak *'
|
||||
write(*,*) '* Integral Package for dummies *'
|
||||
write(*,*) '********************************'
|
||||
write(*,*)
|
||||
|
||||
! Debugger on?
|
||||
|
||||
debug = .false.
|
||||
! debug = .true.
|
||||
|
||||
! Which integrals do you want?
|
||||
|
||||
doOv = .true.
|
||||
doKin = .true.
|
||||
doNuc = .true.
|
||||
doERI = .true.
|
||||
doF12 = .false.
|
||||
doYuk = .false.
|
||||
doErf = .false.
|
||||
|
||||
do3eInt(1) = .false.
|
||||
do3eInt(2) = .false.
|
||||
do3eInt(3) = .false.
|
||||
|
||||
do4eInt(1) = .false.
|
||||
do4eInt(2) = .false.
|
||||
do4eInt(3) = .false.
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Read input information
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
call ReadNAtoms(NAtoms)
|
||||
|
||||
allocate(ZNuc(1:NAtoms),XYZAtoms(1:NAtoms,1:3))
|
||||
|
||||
call ReadGeometry(NAtoms,ZNuc,XYZAtoms)
|
||||
|
||||
allocate(CenterShell(1:maxShell,1:3),TotAngMomShell(1:maxShell),KShell(1:maxShell), &
|
||||
DShell(1:maxShell,1:maxK),ExpShell(1:maxShell,1:maxK))
|
||||
|
||||
call ReadBasis(NAtoms,XYZAtoms,nShell,CenterShell, &
|
||||
TotAngMomShell,KShell,DShell,ExpShell)
|
||||
|
||||
call CalcNBasis(nShell,TotAngMomShell,NBasis)
|
||||
|
||||
call ReadGeminal(ExpS)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Memory allocation
|
||||
!------------------------------------------------------------------------
|
||||
allocate(S(1:NBasis,1:NBasis))
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute one-electron overlap integrals
|
||||
!------------------------------------------------------------------------
|
||||
if(doOv) then
|
||||
|
||||
iType = 1
|
||||
|
||||
call cpu_time(start_1eInt(iType))
|
||||
call ComputeOv(debug,NBasis,nShell, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np1eInt(iType),nSigp1eInt(iType),nc1eInt(iType),nSigc1eInt(iType),S)
|
||||
call cpu_time(end_1eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive overlap integrals = ',np1eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive overlap integrals = ',nSigp1eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted overlap integrals = ',nc1eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted overlap integrals = ',nSigc1eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_1eInt(iType) = end_1eInt(iType) - start_1eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_1eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute one-electron kinetic integrals
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(doKin) then
|
||||
|
||||
iType = 2
|
||||
|
||||
call cpu_time(start_1eInt(iType))
|
||||
call ComputeKin(debug,nShell, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np1eInt(iType),nSigp1eInt(iType),nc1eInt(iType),nSigc1eInt(iType))
|
||||
call cpu_time(end_1eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive kinetic integrals = ',np1eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive kinetic integrals = ',nSigp1eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted kinetic integrals = ',nc1eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted kinetic integrals = ',nSigc1eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_1eInt(iType) = end_1eInt(iType) - start_1eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_1eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute one-electron nuclear attraction integrals
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(doNuc) then
|
||||
|
||||
iType = 3
|
||||
|
||||
call cpu_time(start_1eInt(iType))
|
||||
call ComputeNuc(debug,nShell, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
NAtoms,ZNuc,XYZAtoms, &
|
||||
np1eInt(iType),nSigp1eInt(iType),nc1eInt(iType),nSigc1eInt(iType))
|
||||
call cpu_time(end_1eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive nuclear integrals = ',np1eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive nuclear integrals = ',nSigp1eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted nuclear integrals = ',nc1eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted nuclear integrals = ',nSigc1eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_1eInt(iType) = end_1eInt(iType) - start_1eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_1eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute ERIs
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(doERI) then
|
||||
|
||||
iType = 1
|
||||
KG = 1
|
||||
allocate(DG(1:KG),ExpG(1:KG))
|
||||
DG = (/ 1d0 /)
|
||||
ExpG = (/ 0d0 /)
|
||||
|
||||
call cpu_time(start_2eInt(iType))
|
||||
call Compute2eInt(debug,iType,nShell, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np2eInt(iType),nSigp2eInt(iType),nc2eInt(iType),nSigc2eInt(iType))
|
||||
call cpu_time(end_2eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive ERIs = ',np2eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive ERIs = ',nSigp2eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted ERIs = ',nc2eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted ERIs = ',nSigc2eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_2eInt(iType) = end_2eInt(iType) - start_2eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_2eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute F12 two-electron integrals
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(doF12) then
|
||||
|
||||
iType = 2
|
||||
KG = 6
|
||||
allocate(DG(1:KG),ExpG(1:KG))
|
||||
DG = (/ 0.3144d0, 0.3037d0, 0.1681d0, 0.09811d0, 0.06024d0, 0.03726d0 /)
|
||||
ExpG = (/ 0.2209d0, 1.004d0, 3.622d0, 12.16d0, 45.87d0, 254.4d0 /)
|
||||
|
||||
! KG = 10
|
||||
! allocate(DG(1:KG),ExpG(1:KG))
|
||||
|
||||
! DG = (/ 220.983854141, 18.52358977132, 4.81060044582, 1.892812227999, &
|
||||
! 0.920641976732, 0.505281134191, 0.295757471525, 0.1753021140139, &
|
||||
! 0.0969611396173, 0.0386163391551 /)
|
||||
! ExpG = (/ 5722.54799330, 191.0413784782, 27.4417708701, 6.39987966572, &
|
||||
! 1.82203908762, 0.548835646170, 0.156252937904, 0.036440796942, &
|
||||
! 0.0052344680925, 0.00017474733304 /)
|
||||
|
||||
! KG = 20
|
||||
! allocate(DG(1:KG),ExpG(1:KG))
|
||||
|
||||
! DG = (/ 841.88478132, 70.590185207, 18.3616020768, 7.2608642093, &
|
||||
!3.57483416444, 2.01376031082, 1.24216542801, 0.81754348620, &
|
||||
!0.564546514023, 0.404228610699, 0.297458536575, 0.223321219537, &
|
||||
!0.169933732064, 0.130190978230, 0.099652303426, 0.075428246546, &
|
||||
!0.0555635614051, 0.0386791283055, 0.0237550435652, 0.0100062783874 /)
|
||||
|
||||
! ExpG = (/84135.654509, 2971.58727634, 474.716025959, 130.676724560, &
|
||||
!47.3938388887, 20.2078651631, 9.5411021938, 4.8109546955, &
|
||||
!2.52795733067, 1.35894103210, 0.73586710268, 0.39557629706, &
|
||||
!0.20785895177, 0.104809693858, 0.049485682527, 0.021099788990, &
|
||||
!0.007652472186, 0.0021065225215, 0.0003365204879, 0.00001188556749 /)
|
||||
|
||||
|
||||
|
||||
call cpu_time(start_2eInt(iType))
|
||||
call Compute2eInt(debug,iType,nShell, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np2eInt(iType),nSigp2eInt(iType),nc2eInt(iType),nSigc2eInt(iType))
|
||||
call cpu_time(end_2eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive geminal integrals = ',np2eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive geminal integrals = ',nSigp2eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted geminal integrals = ',nc2eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted geminal integrals = ',nSigc2eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_2eInt(iType) = end_2eInt(iType) - start_2eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_2eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute Yukawa two-electron integrals
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(doYuk) then
|
||||
|
||||
iType = 3
|
||||
KG = 6
|
||||
allocate(DG(1:KG),ExpG(1:KG))
|
||||
DG = (/ 0.3144d0, 0.3037d0, 0.1681d0, 0.09811d0, 0.06024d0, 0.03726d0 /)
|
||||
ExpG = (/ 0.2209d0, 1.004d0, 3.622d0, 12.16d0, 45.87d0, 254.4d0 /)
|
||||
|
||||
call cpu_time(start_2eInt(iType))
|
||||
call Compute2eInt(debug,iType,nShell, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np2eInt(iType),nSigp2eInt(iType),nc2eInt(iType),nSigc2eInt(iType))
|
||||
call cpu_time(end_2eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive Yukawa integrals = ',np2eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive Yukawa integrals = ',nSigp2eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted Yukawa integrals = ',nc2eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted Yukawa integrals = ',nSigc2eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_2eInt(iType) = end_2eInt(iType) - start_2eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_2eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute long-range Coulomb two-electron integrals
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(doErf) then
|
||||
|
||||
iType = 4
|
||||
KG = 1
|
||||
allocate(DG(1:KG),ExpG(1:KG))
|
||||
DG = (/ 1d0 /)
|
||||
ExpG = (/ 1d0 /)
|
||||
ExpS = ExpS*ExpS
|
||||
|
||||
call cpu_time(start_2eInt(iType))
|
||||
call Compute2eInt(debug,iType,nShell, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np2eInt(iType),nSigp2eInt(iType),nc2eInt(iType),nSigc2eInt(iType))
|
||||
call cpu_time(end_2eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive long-range Coulomb integrals = ',np2eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive long-range Coulomb integrals = ',nSigp2eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted long-range Coulomb integrals = ',nc2eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted long-range Coulomb integrals = ',nSigc2eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_2eInt(iType) = end_2eInt(iType) - start_2eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_2eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute three-electron integrals: Type 1 => chain C12 S23
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(do3eInt(1)) then
|
||||
|
||||
iType = 1
|
||||
KG = 1
|
||||
! KG = 6
|
||||
allocate(DG(1:KG),ExpG(1:KG))
|
||||
DG = (/ 1d0 /)
|
||||
ExpG = (/ 1d0 /)
|
||||
! DG = (/ 0.3144d0, 0.3037d0, 0.1681d0, 0.09811d0, 0.06024d0, 0.03726d0 /)
|
||||
! ExpG = (/ 0.2209d0, 1.004d0, 3.622d0, 12.16d0, 45.87d0, 254.4d0 /)
|
||||
|
||||
call cpu_time(start_3eInt(iType))
|
||||
call Compute3eInt(debug,iType,nShell, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np3eInt(iType),nSigp3eInt(iType),nc3eInt(iType),nSigc3eInt(iType))
|
||||
call cpu_time(end_3eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive f23/r12 integrals = ',np3eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive f23/r12 integrals = ',nSigp3eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted f23/r12 integrals = ',nc3eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted f23/r12 integrals = ',nSigc3eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_3eInt(iType) = end_3eInt(iType) - start_3eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_3eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute three-electron integrals: Type 2 => cyclic C12 S13 S23
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(do3eInt(2)) then
|
||||
|
||||
iType = 2
|
||||
KG = 6
|
||||
allocate(DG(1:KG),ExpG(1:KG))
|
||||
DG = (/ 0.3144d0, 0.3037d0, 0.1681d0, 0.09811d0, 0.06024d0, 0.03726d0 /)
|
||||
ExpG = (/ 0.2209d0, 1.004d0, 3.622d0, 12.16d0, 45.87d0, 254.4d0 /)
|
||||
|
||||
call cpu_time(start_3eInt(iType))
|
||||
call Compute3eInt(debug,iType,nShell, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np3eInt(iType),nSigp3eInt(iType),nc3eInt(iType),nSigc3eInt(iType))
|
||||
call cpu_time(end_3eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive f13.f23/r12 integrals = ',np3eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive f13.f23/r12 integrals = ',nSigp3eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted f13.f23/r12 integrals = ',nc3eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted f13.f23/r12 integrals = ',nSigc3eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_3eInt(iType) = end_3eInt(iType) - start_3eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_3eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute three-electron integrals: Type 3 => chain S13 S23
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(do3eInt(3)) then
|
||||
|
||||
iType = 3
|
||||
KG = 6
|
||||
allocate(DG(1:KG),ExpG(1:KG))
|
||||
DG = (/ 0.3144d0, 0.3037d0, 0.1681d0, 0.09811d0, 0.06024d0, 0.03726d0 /)
|
||||
ExpG = (/ 0.2209d0, 1.004d0, 3.622d0, 12.16d0, 45.87d0, 254.4d0 /)
|
||||
|
||||
call cpu_time(start_3eInt(iType))
|
||||
call Compute3eInt(debug,iType,nShell, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
np3eInt(iType),nSigp3eInt(iType),nc3eInt(iType),nSigc3eInt(iType))
|
||||
call cpu_time(end_3eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive f13.f23 integrals = ',np3eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive f13.f23 integrals = ',nSigp3eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted f13.f23 integrals = ',nc3eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted f13.f23 integrals = ',nSigc3eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_3eInt(iType) = end_3eInt(iType) - start_3eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_3eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute four-electron integrals: Type 1 => chain C12 S14 S23
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(do4eInt(1)) then
|
||||
|
||||
iType = 1
|
||||
KG = 6
|
||||
allocate(DG(1:KG),ExpG(1:KG))
|
||||
DG = (/ 0.3144d0, 0.3037d0, 0.1681d0, 0.09811d0, 0.06024d0, 0.03726d0 /)
|
||||
ExpG = (/ 0.2209d0, 1.004d0, 3.622d0, 12.16d0, 45.87d0, 254.4d0 /)
|
||||
|
||||
call cpu_time(start_4eInt(iType))
|
||||
! call Compute4eInt(debug,iType,nShell,ExpS, &
|
||||
! ExpS,KG,DG,ExpG, &
|
||||
! CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
! np4eInt(iType),nSigp4eInt(iType),nc4eInt(iType),nSigc4eInt(iType))
|
||||
call cpu_time(end_4eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive f14.f23/r12 integrals = ',np4eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive f14.f23/r12 integrals = ',nSigp4eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted f14.f23/r12 integrals = ',nc4eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted f14.f23/r12 integrals = ',nSigc4eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_4eInt(iType) = end_4eInt(iType) - start_4eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_4eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute four-electron integrals: Type 2 => trident C12 S13 S14
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(do4eInt(2)) then
|
||||
|
||||
iType = 2
|
||||
KG = 6
|
||||
DG = (/ 0.3144d0, 0.3037d0, 0.1681d0, 0.09811d0, 0.06024d0, 0.03726d0 /)
|
||||
ExpG = (/ 0.2209d0, 1.004d0, 3.622d0, 12.16d0, 45.87d0, 254.4d0 /)
|
||||
|
||||
call cpu_time(start_4eInt(iType))
|
||||
! call Compute4eInt(debug,iType,nShell,ExpS, &
|
||||
! ExpS,KG,DG,ExpG, &
|
||||
! CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
! np4eInt(iType),nSigp4eInt(iType),nc4eInt(iType),nSigc4eInt(iType))
|
||||
call cpu_time(end_4eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive f13.f14/r12 integrals = ',np4eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive f13.f14/r12 integrals = ',nSigp4eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted f13.f14/r12 integrals = ',nc4eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted f13.f14/r12 integrals = ',nSigc4eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_4eInt(iType) = end_4eInt(iType) - start_4eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_4eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute four-electron integrals: Type 3 => chain C12 S13 S34
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(do4eInt(3)) then
|
||||
|
||||
iType = 3
|
||||
KG = 6
|
||||
allocate(DG(1:KG),ExpG(1:KG))
|
||||
DG = (/ 0.3144d0, 0.3037d0, 0.1681d0, 0.09811d0, 0.06024d0, 0.03726d0 /)
|
||||
ExpG = (/ 0.2209d0, 1.004d0, 3.622d0, 12.16d0, 45.87d0, 254.4d0 /)
|
||||
|
||||
call cpu_time(start_4eInt(iType))
|
||||
! call Compute4eInt(debug,iType,nShell, &
|
||||
! ExpS,KG,DG,ExpG, &
|
||||
! CenterShell,TotAngMomShell,KShell,DShell,ExpShell, &
|
||||
! np4eInt(iType),nSigp4eInt(iType),nc4eInt(iType),nSigc4eInt(iType))
|
||||
call cpu_time(end_4eInt(iType))
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of primitive f13.f34/r12 integrals = ',np4eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant primitive f13.f34/r12 integrals = ',nSigp4eInt(iType)
|
||||
|
||||
write(*,'(A65,1X,I9)') 'Total number of contracted f13.f34/r12 integrals = ',nc4eInt(iType)
|
||||
write(*,'(A65,1X,I9)') 'Number of significant contracted f13.f34/r12 integrals = ',nSigc4eInt(iType)
|
||||
|
||||
write(*,*)
|
||||
|
||||
t_4eInt(iType) = end_4eInt(iType) - start_4eInt(iType)
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time = ',t_4eInt(iType),' seconds'
|
||||
write(*,*)
|
||||
|
||||
deallocate(DG,ExpG)
|
||||
|
||||
endif
|
||||
!------------------------------------------------------------------------
|
||||
! End of IntPak
|
||||
!------------------------------------------------------------------------
|
||||
end program IntPak
|
76
src/IntPak/KinInt.f90
Normal file
76
src/IntPak/KinInt.f90
Normal file
@ -0,0 +1,76 @@
|
||||
subroutine KinInt(npKin,nSigpKin,ExpA,CenterA,AngMomA,ExpB,CenterB,AngMomB,pKin)
|
||||
|
||||
! Compute one-electron kinetic integrals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: ExpA,ExpB
|
||||
double precision,intent(in) :: CenterA(3),CenterB(3)
|
||||
integer,intent(in) :: AngMomA(3),AngMomB(3)
|
||||
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: ExpAi,ExpBi
|
||||
double precision :: ExpP,ExpPi
|
||||
double precision :: CenterP(3),CenterAB(3),CenterPA(3)
|
||||
double precision :: NormABSq
|
||||
double precision :: GAB
|
||||
double precision :: HRROv,RRKin
|
||||
|
||||
integer :: i
|
||||
double precision :: pi
|
||||
double precision :: start_RR,finish_RR,t_RR
|
||||
double precision :: s(3),k(3)
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(inout) :: npKin,nSigpKin
|
||||
double precision,intent(out) :: pKin
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! Pre-computed shell quantities
|
||||
|
||||
ExpAi = 1d0/ExpA
|
||||
ExpBi = 1d0/ExpB
|
||||
|
||||
! Pre-computed quantities for shell-pair AB
|
||||
|
||||
ExpP = ExpA + ExpB
|
||||
ExpPi = 1d0/ExpP
|
||||
|
||||
NormABSq = 0d0
|
||||
Do i=1,3
|
||||
CenterP(i) = (ExpA*CenterA(i) + ExpB*CenterB(i))*ExpPi
|
||||
CenterPA(i) = CenterP(i) - CenterA(i)
|
||||
CenterAB(i) = CenterA(i) - CenterB(i)
|
||||
NormABSq = NormABSq + CenterAB(i)**2
|
||||
Enddo
|
||||
|
||||
GAB = (pi*ExpPi)**(1.5d0)*exp(-NormABSq/(ExpAi+ExpBi))
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Launch reccurence relations!
|
||||
!------------------------------------------------------------------------
|
||||
call cpu_time(start_RR)
|
||||
! Loop over cartesian directions
|
||||
Do i=1,3
|
||||
s(i) = HRROv(AngMomA(i),AngMomB(i),ExpPi,CenterAB(i),CenterPA(i))
|
||||
k(i) = RRKin(AngMomA(i),AngMomB(i),ExpA,ExpB,ExpPi,CenterAB(i),CenterPA(i))
|
||||
Enddo
|
||||
call cpu_time(finish_RR)
|
||||
|
||||
pKin = k(1)*s(2)*s(3) + s(1)*k(2)*s(3) + s(1)*s(2)*k(3)
|
||||
pKin = GAB*pKin
|
||||
t_RR = finish_RR - start_RR
|
||||
|
||||
! Print result
|
||||
npKin = npKin + 1
|
||||
if(abs(pKin) > 1d-15) then
|
||||
nSigpKin = nSigpKin + 1
|
||||
endif
|
||||
|
||||
end subroutine KinInt
|
29
src/IntPak/Makefile
Normal file
29
src/IntPak/Makefile
Normal file
@ -0,0 +1,29 @@
|
||||
IDIR =../../include
|
||||
LDIR =../../lib
|
||||
BDIR =../../bin
|
||||
ODIR = obj
|
||||
SDIR =.
|
||||
FC = gfortran
|
||||
FFLAGS = -Wall -O3 -I$(IDIR)
|
||||
DFLAGS = -g -msse4.2 -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant
|
||||
|
||||
|
||||
LIBS = $(LDIR)/*.a $(LDIR)/slatec/src/static/libslatec.a
|
||||
|
||||
|
||||
SRC = $(wildcard *.f90)
|
||||
|
||||
OBJ = $(patsubst %.f90,$(ODIR)/%.o,$(SRC))
|
||||
|
||||
|
||||
$(ODIR)/%.o: %.f90
|
||||
$(FC) -c -o $@ $< $(FFLAGS)
|
||||
|
||||
$(BDIR)/IntPak: $(OBJ)
|
||||
$(FC) -o $@ $^ $(FFLAGS) $(LIBS)
|
||||
|
||||
debug: $(OBJ)
|
||||
$(FC) -o $(BDIR)/$@ $^ $(FFLAGS) $(LIBS) $(DFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f $(ODIR)/*.o $(BDIR)/IntPak $(BDIR)/debug
|
29
src/IntPak/NormCoeff.f90
Normal file
29
src/IntPak/NormCoeff.f90
Normal file
@ -0,0 +1,29 @@
|
||||
function NormCoeff(alpha,a)
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: alpha
|
||||
integer,intent(in) :: a(3)
|
||||
|
||||
! local variable
|
||||
double precision :: pi,dfa(3),dfac
|
||||
integer :: atot
|
||||
|
||||
! Output variable
|
||||
double precision NormCoeff
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
atot = a(1) + a(2) + a(3)
|
||||
|
||||
dfa(1) = dfac(2*a(1))/(2d0**a(1)*dfac(a(1)))
|
||||
dfa(2) = dfac(2*a(2))/(2d0**a(2)*dfac(a(2)))
|
||||
dfa(3) = dfac(2*a(3))/(2d0**a(3)*dfac(a(3)))
|
||||
|
||||
|
||||
NormCoeff = (2d0*alpha/pi)**(3d0/2d0)*(4d0*alpha)**atot
|
||||
NormCoeff = NormCoeff/(dfa(1)*dfa(2)*dfa(3))
|
||||
NormCoeff = sqrt(NormCoeff)
|
||||
|
||||
end function NormCoeff
|
114
src/IntPak/NucInt.f90
Normal file
114
src/IntPak/NucInt.f90
Normal file
@ -0,0 +1,114 @@
|
||||
subroutine NucInt(debug,npNuc,nSigpNuc, &
|
||||
ExpA,CenterA,AngMomA, &
|
||||
ExpB,CenterB,AngMomB, &
|
||||
CenterC, &
|
||||
pNuc)
|
||||
|
||||
! Compute recursively the primitive one-electron nuclear attraction integrals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
double precision,intent(in) :: ExpA,ExpB
|
||||
double precision,intent(in) :: CenterA(3),CenterB(3),CenterC(3)
|
||||
integer,intent(in) :: AngMomA(3),AngMomB(3)
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: ExpAi,ExpBi
|
||||
integer :: TotAngMomA,TotAngMomB
|
||||
double precision :: ExpP,ExpPi
|
||||
double precision :: CenterP(3),CenterAB(3),CenterPA(3),CenterPC(3)
|
||||
double precision :: NormABSq,NormPCSq
|
||||
double precision :: G
|
||||
double precision,allocatable :: Om(:)
|
||||
double precision :: HRRNuc
|
||||
double precision :: Gab
|
||||
|
||||
double precision :: pi
|
||||
integer :: i,maxm
|
||||
double precision :: start_Om,finish_Om,start_RR,finish_RR,t_Om,t_RR
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(inout) :: npNuc,nSigpNuc
|
||||
double precision,intent(out) :: pNuc
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! Pre-computed shell quantities
|
||||
|
||||
ExpAi = 1d0/ExpA
|
||||
ExpBi = 1d0/ExpB
|
||||
|
||||
! Pre-computed quantities for shell-pair AB
|
||||
|
||||
ExpP = ExpA + ExpB
|
||||
ExpPi = 1d0/ExpP
|
||||
|
||||
NormABSq = 0d0
|
||||
NormPCSq = 0d0
|
||||
do i=1,3
|
||||
CenterP(i) = (ExpA*CenterA(i) + ExpB*CenterB(i))*ExpPi
|
||||
CenterAB(i) = CenterA(i) - CenterB(i)
|
||||
CenterPA(i) = CenterP(i) - CenterA(i)
|
||||
CenterPC(i) = CenterP(i) - CenterC(i)
|
||||
NormABSq = NormABSq + CenterAB(i)**2
|
||||
NormPCSq = NormPCSq + CenterPC(i)**2
|
||||
enddo
|
||||
|
||||
G = (pi*ExpPi)**(1.5d0)*exp(-NormABSq/(ExpAi+ExpBi))
|
||||
|
||||
! Total angular momemtum
|
||||
|
||||
TotAngMomA = AngMomA(1) + AngMomA(2) + AngMomA(3)
|
||||
TotAngMomB = AngMomB(1) + AngMomB(2) + AngMomB(3)
|
||||
|
||||
maxm = TotAngMomA + TotAngMomB
|
||||
|
||||
! Pre-compute (0|V|0)^m
|
||||
|
||||
allocate(Om(0:maxm))
|
||||
call cpu_time(start_Om)
|
||||
call CalcOmNuc(maxm,ExpPi,NormPCSq,Om)
|
||||
call cpu_time(finish_Om)
|
||||
|
||||
! Print (0|V|0)^m
|
||||
|
||||
if(debug) then
|
||||
write(*,*) '(0|V|0)^m'
|
||||
do i=0,maxm
|
||||
write(*,*) i,Om(i)
|
||||
enddo
|
||||
write(*,*)
|
||||
endif
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Launch reccurence relations!
|
||||
!------------------------------------------------------------------------
|
||||
call cpu_time(start_RR)
|
||||
Gab = HRRNuc(AngMomA,AngMomB,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC)
|
||||
call cpu_time(finish_RR)
|
||||
|
||||
! Timings
|
||||
|
||||
t_Om = finish_Om - start_Om
|
||||
t_RR = finish_RR - start_RR
|
||||
|
||||
! Print result
|
||||
|
||||
pNuc = G*Gab
|
||||
|
||||
npNuc = npNuc + 1
|
||||
if(abs(pNuc) > 1d-15) then
|
||||
nSigpNuc = nSigpNuc + 1
|
||||
! write(*,'(A10,1X,F16.10,1X,I6,1X,I6)') '[a|V|b] = ',pNuc
|
||||
endif
|
||||
|
||||
! Deallocate arrays
|
||||
|
||||
deallocate(Om)
|
||||
|
||||
end subroutine NucInt
|
74
src/IntPak/OvInt.f90
Normal file
74
src/IntPak/OvInt.f90
Normal file
@ -0,0 +1,74 @@
|
||||
subroutine OvInt(npOv,nSigpOv,ExpA,CenterA,AngMomA,ExpB,CenterB,AngMomB,pOv)
|
||||
|
||||
! Compute one-electron overlap integrals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: ExpA,ExpB
|
||||
double precision,intent(in) :: CenterA(3),CenterB(3)
|
||||
integer,intent(in) :: AngMomA(3),AngMomB(3)
|
||||
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: ExpAi,ExpBi
|
||||
double precision :: ExpP,ExpPi
|
||||
double precision :: CenterP(3),CenterAB(3),CenterPA(3)
|
||||
double precision :: NormABSq
|
||||
double precision :: G
|
||||
double precision :: HRROv
|
||||
|
||||
integer :: i
|
||||
double precision :: pi
|
||||
double precision :: start_RR,finish_RR,t_RR
|
||||
double precision :: Gab(3)
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(inout) :: npOv,nSigpOv
|
||||
double precision,intent(out) :: pOv
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! Pre-computed shell quantities
|
||||
|
||||
ExpAi = 1d0/ExpA
|
||||
ExpBi = 1d0/ExpB
|
||||
|
||||
! Pre-computed quantities for shell-pair AB
|
||||
|
||||
ExpP = ExpA + ExpB
|
||||
ExpPi = 1d0/ExpP
|
||||
|
||||
NormABSq = 0d0
|
||||
Do i=1,3
|
||||
CenterP(i) = (ExpA*CenterA(i) + ExpB*CenterB(i))*ExpPi
|
||||
CenterPA(i) = CenterP(i) - CenterA(i)
|
||||
CenterAB(i) = CenterA(i) - CenterB(i)
|
||||
NormABSq = NormABSq + CenterAB(i)**2
|
||||
Enddo
|
||||
|
||||
G = (pi*ExpPi)**(1.5d0)*exp(-NormABSq/(ExpAi+ExpBi))
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Launch reccurence relations!
|
||||
!------------------------------------------------------------------------
|
||||
call cpu_time(start_RR)
|
||||
! Loop over cartesian directions
|
||||
Do i=1,3
|
||||
Gab(i) = HRROv(AngMomA(i),AngMomB(i),ExpPi,CenterAB(i),CenterPA(i))
|
||||
Enddo
|
||||
call cpu_time(finish_RR)
|
||||
|
||||
pOv = G*Gab(1)*Gab(2)*Gab(3)
|
||||
t_RR = finish_RR - start_RR
|
||||
|
||||
! Print result
|
||||
npOv = npOv + 1
|
||||
if(abs(pOv) > 1d-15) then
|
||||
nSigpOv = nSigpOv + 1
|
||||
endif
|
||||
|
||||
end subroutine OvInt
|
29
src/IntPak/RRKin.f90
Normal file
29
src/IntPak/RRKin.f90
Normal file
@ -0,0 +1,29 @@
|
||||
function RRKin(AngMomA,AngMomB,ExpA,ExpB,ExpPi,CenterAB,CenterPA) &
|
||||
result(Gab)
|
||||
|
||||
! Recurrence relation for one-electron kinetic integrals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
integer,intent(in) :: AngMomA,AngMomB
|
||||
double precision,intent(in) :: ExpA,ExpB,ExpPi
|
||||
double precision,intent(in) :: CenterAB,CenterPA
|
||||
|
||||
! Local variables
|
||||
double precision :: HRROv
|
||||
double precision :: a,b,s1,s2,s3,s4
|
||||
double precision :: Gab
|
||||
|
||||
a = dble(AngMomA)
|
||||
b = dble(AngMomB)
|
||||
|
||||
s1 = HRROv(AngMomA-1,AngMomB-1,ExpPi,CenterAB,CenterPA)
|
||||
s2 = HRROv(AngMomA+1,AngMomB-1,ExpPi,CenterAB,CenterPA)
|
||||
s3 = HRROv(AngMomA-1,AngMomB+1,ExpPi,CenterAB,CenterPA)
|
||||
s4 = HRROv(AngMomA+1,AngMomB+1,ExpPi,CenterAB,CenterPA)
|
||||
|
||||
Gab = 0.5d0*a*b*s1 - ExpA*b*s2 - a*ExpB*s3 + 2d0*ExpA*ExpB*s4
|
||||
|
||||
|
||||
end function RRKin
|
176
src/IntPak/ReadBasis.f90
Normal file
176
src/IntPak/ReadBasis.f90
Normal file
@ -0,0 +1,176 @@
|
||||
subroutine ReadBasis(NAtoms,XYZAtoms,nShell,CenterShell, &
|
||||
TotAngMomShell,KShell,DShell,ExpShell)
|
||||
|
||||
! Read basis set information
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: NAtoms
|
||||
double precision,intent(in) :: XYZAtoms(NAtoms,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: nShAt,iAt
|
||||
integer :: i,j,k
|
||||
character :: shelltype
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: nShell
|
||||
double precision,intent(out) :: CenterShell(maxShell,3)
|
||||
integer,intent(out) :: TotAngMomShell(maxShell),KShell(maxShell)
|
||||
double precision,intent(out) :: DShell(maxShell,maxK),ExpShell(maxShell,maxK)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Primary basis set information
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Open file with basis set specification
|
||||
|
||||
open(unit=2,file='input/basis')
|
||||
|
||||
! Read basis information
|
||||
|
||||
write(*,'(A28)') 'Gaussian basis set'
|
||||
write(*,'(A28)') '------------------'
|
||||
|
||||
nShell = 0
|
||||
do i=1,NAtoms
|
||||
read(2,*) iAt,nShAt
|
||||
write(*,'(A28,1X,I16)') 'Atom n. ',iAt
|
||||
write(*,'(A28,1X,I16)') 'number of shells ',nShAt
|
||||
write(*,'(A28)') '------------------'
|
||||
|
||||
! Basis function centers
|
||||
|
||||
do j=1,nShAt
|
||||
nShell = nShell + 1
|
||||
do k=1,3
|
||||
CenterShell(nShell,k) = XYZAtoms(iAt,k)
|
||||
enddo
|
||||
|
||||
! Shell type and contraction degree
|
||||
|
||||
read(2,*) shelltype,KShell(nShell)
|
||||
if(shelltype == "S") then
|
||||
TotAngMomShell(nShell) = 0
|
||||
write(*,'(A28,1X,I16)') 's-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "P") then
|
||||
TotAngMomShell(nShell) = 1
|
||||
write(*,'(A28,1X,I16)') 'p-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "D") then
|
||||
TotAngMomShell(nShell) = 2
|
||||
write(*,'(A28,1X,I16)') 'd-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "F") then
|
||||
TotAngMomShell(nShell) = 3
|
||||
write(*,'(A28,1X,I16)') 'f-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "G") then
|
||||
TotAngMomShell(nShell) = 4
|
||||
write(*,'(A28,1X,I16)') 'g-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "H") then
|
||||
TotAngMomShell(nShell) = 5
|
||||
write(*,'(A28,1X,I16)') 'h-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "I") then
|
||||
TotAngMomShell(nShell) = 6
|
||||
write(*,'(A28,1X,I16)') 'i-type shell with K = ',KShell(nShell)
|
||||
endif
|
||||
|
||||
! Read exponents and contraction coefficients
|
||||
|
||||
write(*,'(A28,1X,A16,A16)') '','Exponents','Contraction'
|
||||
do k=1,Kshell(nShell)
|
||||
read(2,*) ExpShell(nShell,k),DShell(nShell,k)
|
||||
write(*,'(A28,1X,F16.10,F16.10)') '',ExpShell(nShell,k),DShell(nShell,k)
|
||||
enddo
|
||||
enddo
|
||||
write(*,'(A28)') '------------------'
|
||||
enddo
|
||||
|
||||
! Total number of shells
|
||||
|
||||
write(*,'(A28,1X,I16)') 'Number of shells in OBS',nShell
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,*)
|
||||
|
||||
! Close file with basis set specification
|
||||
|
||||
close(unit=2)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Auxiliary basis set information
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Open file with auxilairy basis specification
|
||||
|
||||
open(unit=3,file='input/auxbasis')
|
||||
|
||||
! Read basis information
|
||||
|
||||
write(*,'(A28)') 'Auxiliary basis set'
|
||||
write(*,'(A28)') '-------------------'
|
||||
|
||||
do i=1,NAtoms
|
||||
read(3,*) iAt,nShAt
|
||||
write(*,'(A28,1X,I16)') 'Atom n. ',iAt
|
||||
write(*,'(A28,1X,I16)') 'number of shells ',nShAt
|
||||
write(*,'(A28)') '------------------'
|
||||
|
||||
! Basis function centers
|
||||
|
||||
do j=1,nShAt
|
||||
nShell = nShell + 1
|
||||
do k=1,3
|
||||
CenterShell(nShell,k) = XYZAtoms(iAt,k)
|
||||
enddo
|
||||
|
||||
! Shell type and contraction degree
|
||||
|
||||
read(3,*) shelltype,KShell(nShell)
|
||||
if(shelltype == "S") then
|
||||
TotAngMomShell(nShell) = 0
|
||||
write(*,'(A28,1X,I16)') 's-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "P") then
|
||||
TotAngMomShell(nShell) = 1
|
||||
write(*,'(A28,1X,I16)') 'p-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "D") then
|
||||
TotAngMomShell(nShell) = 2
|
||||
write(*,'(A28,1X,I16)') 'd-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "F") then
|
||||
TotAngMomShell(nShell) = 3
|
||||
write(*,'(A28,1X,I16)') 'f-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "G") then
|
||||
TotAngMomShell(nShell) = 4
|
||||
write(*,'(A28,1X,I16)') 'g-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "H") then
|
||||
TotAngMomShell(nShell) = 5
|
||||
write(*,'(A28,1X,I16)') 'h-type shell with K = ',KShell(nShell)
|
||||
elseif(shelltype == "I") then
|
||||
TotAngMomShell(nShell) = 6
|
||||
write(*,'(A28,1X,I16)') 'i-type shell with K = ',KShell(nShell)
|
||||
endif
|
||||
|
||||
! Read exponents and contraction coefficients
|
||||
|
||||
write(*,'(A28,1X,A16,A16)') '','Exponents','Contraction'
|
||||
do k=1,Kshell(nShell)
|
||||
read(3,*) ExpShell(nShell,k),DShell(nShell,k)
|
||||
write(*,'(A28,1X,F16.10,F16.10)') '',ExpShell(nShell,k),DShell(nShell,k)
|
||||
enddo
|
||||
enddo
|
||||
write(*,'(A28)') '------------------'
|
||||
enddo
|
||||
|
||||
! Total number of shells
|
||||
|
||||
write(*,'(A28,1X,I16)') 'Number of shells in ABS',nShell
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,*)
|
||||
|
||||
! Close file with basis set specification
|
||||
|
||||
close(unit=3)
|
||||
|
||||
end subroutine ReadBasis
|
25
src/IntPak/ReadGeminal.f90
Normal file
25
src/IntPak/ReadGeminal.f90
Normal file
@ -0,0 +1,25 @@
|
||||
subroutine ReadGeminal(ExpS)
|
||||
|
||||
! Read the geminal information
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
double precision,intent(out) :: ExpS
|
||||
|
||||
! Open file with geometry specification
|
||||
open(unit=4,file='input/geminal')
|
||||
|
||||
! Read exponent of Slater geminal
|
||||
read(4,*) ExpS
|
||||
|
||||
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,'(A28,1X,F16.10)') 'Slater geminal exponent',ExpS
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,*)
|
||||
|
||||
! Close file with geminal information
|
||||
close(unit=4)
|
||||
|
||||
end subroutine ReadGeminal
|
40
src/IntPak/ReadGeometry.f90
Normal file
40
src/IntPak/ReadGeometry.f90
Normal file
@ -0,0 +1,40 @@
|
||||
subroutine ReadGeometry(NAtoms,ZNuc,XYZAtoms)
|
||||
|
||||
! Read molecular geometry
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
integer,intent(in) :: NAtoms
|
||||
double precision,intent(out) :: ZNuc(NAtoms),XYZAtoms(NAtoms,3)
|
||||
|
||||
! Local variables
|
||||
integer :: i
|
||||
|
||||
! Open file with geometry specification
|
||||
open(unit=1,file='input/molecule')
|
||||
|
||||
! Read number of atoms
|
||||
read(1,*)
|
||||
read(1,*)
|
||||
read(1,*)
|
||||
|
||||
do i=1,NAtoms
|
||||
read(1,*) ZNuc(i),XYZAtoms(i,1),XYZAtoms(i,2),XYZAtoms(i,3)
|
||||
enddo
|
||||
|
||||
! Print geometry
|
||||
write(*,'(A28)') 'Molecular geometry'
|
||||
write(*,'(A28)') '------------------'
|
||||
do i=1,NAtoms
|
||||
write(*,'(A28,1X,I16)') 'Atom n. ',i
|
||||
write(*,'(A28,1X,F16.10)') 'Z = ',ZNuc(i)
|
||||
write(*,'(A28,1X,F16.10,F16.10,F16.10)') 'Atom coordinates:',XYZAtoms(i,1),XYZAtoms(i,2),XYZAtoms(i,3)
|
||||
enddo
|
||||
write(*,'(A28)') '------------------'
|
||||
write(*,*)
|
||||
|
||||
! Close file with geometry specification
|
||||
close(unit=1)
|
||||
|
||||
end subroutine ReadGeometry
|
20
src/IntPak/ReadNAtoms.f90
Normal file
20
src/IntPak/ReadNAtoms.f90
Normal file
@ -0,0 +1,20 @@
|
||||
subroutine ReadNAtoms(NAtoms)
|
||||
|
||||
! Read number of atoms
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
integer,intent(out) :: NAtoms
|
||||
|
||||
! Open file with geometry specification
|
||||
open(unit=1,file='input/molecule')
|
||||
|
||||
! Read number of atoms
|
||||
read(1,*)
|
||||
read(1,*) NAtoms
|
||||
|
||||
! Close file with geometry specification
|
||||
close(unit=1)
|
||||
|
||||
end subroutine ReadNAtoms
|
70
src/IntPak/S2eInt.f90
Normal file
70
src/IntPak/S2eInt.f90
Normal file
@ -0,0 +1,70 @@
|
||||
subroutine S2eInt(debug,iType,np2eInt,nSigp2eInt, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
ExpBra,CenterBra,AngMomBra, &
|
||||
ExpKet,CenterKet,AngMomKet, &
|
||||
p2eInt)
|
||||
|
||||
! Perform contraction over the operator for two-electron integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
integer,intent(in) :: iType
|
||||
double precision,intent(in) :: ExpS
|
||||
integer,intent(in) :: KG
|
||||
double precision,intent(in) :: DG(KG),ExpG(KG)
|
||||
double precision,intent(in) :: ExpBra(2),ExpKet(2)
|
||||
double precision,intent(in) :: CenterBra(2,3),CenterKet(2,3)
|
||||
integer,intent(in) :: AngMomBra(2,3),AngMomKet(2,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: ExpSG
|
||||
double precision :: G2eInt,GF12Int
|
||||
|
||||
integer :: k
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: np2eInt,nSigp2eInt
|
||||
double precision :: p2eInt
|
||||
|
||||
p2eInt = 0d0
|
||||
|
||||
! Gaussian geminal
|
||||
|
||||
if(iType == 2) then
|
||||
do k=1,KG
|
||||
ExpSG = ExpG(k)*ExpS**2
|
||||
p2eInt = p2eInt &
|
||||
+ DG(k)*GF12Int(ExpSG, &
|
||||
ExpBra(1),CenterBra(1,1:3),AngMomBra(1,1:3), &
|
||||
ExpKet(1),CenterKet(1,1:3),AngMomKet(1,1:3), &
|
||||
ExpBra(2),CenterBra(2,1:3),AngMomBra(2,1:3), &
|
||||
ExpKet(2),CenterKet(2,1:3),AngMomKet(2,1:3))
|
||||
enddo
|
||||
else
|
||||
do k=1,KG
|
||||
ExpSG = ExpG(k)*ExpS**2
|
||||
p2eInt = p2eInt &
|
||||
+ DG(k)*G2eInt(debug,iType, &
|
||||
ExpSG, &
|
||||
ExpBra,CenterBra,AngMomBra, &
|
||||
ExpKet,CenterKet,AngMomKet)
|
||||
enddo
|
||||
endif
|
||||
|
||||
! Print result
|
||||
|
||||
np2eInt = np2eInt + 1
|
||||
|
||||
if(abs(p2eInt) > 1d-15) then
|
||||
nSigp2eInt = nSigp2eInt + 1
|
||||
if(.false.) write(*,'(A15,1X,F16.10)') '[a1a2|b1b2] = ',p2eInt
|
||||
endif
|
||||
|
||||
end subroutine S2eInt
|
58
src/IntPak/S3eInt.f90
Normal file
58
src/IntPak/S3eInt.f90
Normal file
@ -0,0 +1,58 @@
|
||||
subroutine S3eInt(debug,iType,np3eInt,nSigp3eInt, &
|
||||
ExpS,KG,DG,ExpG, &
|
||||
ExpBra,CenterBra,AngMomBra, &
|
||||
ExpKet,CenterKet,AngMomKet, &
|
||||
p3eInt)
|
||||
|
||||
! Perform contraction over the operators for three-electron integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
|
||||
! Input variables
|
||||
|
||||
logical,intent(in) :: debug
|
||||
integer,intent(in) :: iType
|
||||
double precision,intent(in) :: ExpS
|
||||
integer,intent(in) :: KG
|
||||
double precision,intent(in) :: DG(KG),ExpG(KG)
|
||||
double precision,intent(in) :: ExpBra(3),ExpKet(3)
|
||||
double precision,intent(in) :: CenterBra(3,3),CenterKet(3,3)
|
||||
integer,intent(in) :: AngMomBra(3,3),AngMomKet(3,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: ExpSG13,ExpSG23
|
||||
double precision :: G3eInt
|
||||
|
||||
integer :: k,l
|
||||
|
||||
! Output variables
|
||||
|
||||
integer,intent(out) :: np3eInt,nSigp3eInt
|
||||
double precision :: p3eInt
|
||||
|
||||
p3eInt = 0d0
|
||||
do k=1,KG
|
||||
do l=1,KG
|
||||
ExpSG13 = ExpG(k)*ExpS**2
|
||||
ExpSG23 = ExpG(l)*ExpS**2
|
||||
p3eInt = p3eInt &
|
||||
+ DG(k)*DG(l)*G3eInt(debug,iType, &
|
||||
ExpSG13,ExpSG23, &
|
||||
ExpBra,CenterBra,AngMomBra, &
|
||||
ExpKet,CenterKet,AngMomKet)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Print result
|
||||
|
||||
np3eInt = np3eInt + 1
|
||||
|
||||
if(abs(p3eInt) > 1d-15) then
|
||||
nSigp3eInt = nSigp3eInt + 1
|
||||
if(.false.) write(*,'(A15,1X,F16.10)') '[a1a2a3|b1b2b3] = ',p3eInt
|
||||
endif
|
||||
|
||||
end subroutine S3eInt
|
130
src/IntPak/VRR2e.f90
Normal file
130
src/IntPak/VRR2e.f90
Normal file
@ -0,0 +1,130 @@
|
||||
recursive function VRR2e(m,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
result(a1a2)
|
||||
|
||||
! Compute two-electron integrals over Gaussian geminals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: m
|
||||
integer,intent(in) :: AngMomBra(2,3)
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: Om(0:maxm),ExpZi(2),ExpY(2,2)
|
||||
double precision,intent(in) :: CenterZA(2,3),CenterY(2,2,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: NegAngMomBra(2)
|
||||
integer :: TotAngMomBra(2)
|
||||
integer :: a1m(2,3),a2m(2,3)
|
||||
integer :: a1mm(2,3),a2mm(2,3)
|
||||
integer :: a1m2m(2,3)
|
||||
double precision :: fZ(2)
|
||||
integer :: i,j,xyz
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: a1a2
|
||||
|
||||
do i=1,2
|
||||
NegAngMomBra(i) = AngMomBra(i,1) < 0 .or. AngMomBra(i,2) < 0 .or. AngMomBra(i,3) < 0
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
enddo
|
||||
|
||||
fZ(1) = ExpY(1,2)*ExpZi(1)
|
||||
fZ(2) = ExpY(1,2)*ExpZi(2)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Termination condition
|
||||
!------------------------------------------------------------------------
|
||||
! if(NegAngMomBra(1) .or. NegAngMomBra(2)) then
|
||||
! a1a2 = 0d0
|
||||
!------------------------------------------------------------------------
|
||||
! Fundamental integral: (00|00)^m
|
||||
!------------------------------------------------------------------------
|
||||
! elseif(TotAngMomBra(1) == 0 .and. TotAngMomBra(2) == 0) then
|
||||
if(TotAngMomBra(1) == 0 .and. TotAngMomBra(2) == 0) then
|
||||
a1a2 = Om(m)
|
||||
!------------------------------------------------------------------------
|
||||
! 1st vertical recurrence relation (4 terms): (a+0|00)^m
|
||||
!------------------------------------------------------------------------
|
||||
elseif(TotAngMomBra(2) == 0) then
|
||||
do i=1,2
|
||||
do j=1,3
|
||||
a1m(i,j) = AngMomBra(i,j)
|
||||
a1mm(i,j) = AngMomBra(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomBra(1,1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomBra(1,2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomBra(1,3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRR2e!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
a1m(1,xyz) = a1m(1,xyz) - 1
|
||||
a1mm(1,xyz) = a1mm(1,xyz) - 2
|
||||
if(AngMomBra(1,xyz) <= 0) then
|
||||
a1a2 = 0d0
|
||||
elseif(AngMomBra(1,xyz) == 1) then
|
||||
a1a2 = CenterZA(1,xyz)*VRR2e(m,a1m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
- fZ(1)*CenterY(1,2,xyz)*VRR2e(m+1,a1m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY)
|
||||
else
|
||||
a1a2 = CenterZA(1,xyz)*VRR2e(m,a1m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
- fZ(1)*CenterY(1,2,xyz)*VRR2e(m+1,a1m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
+ 0.5d0*dble(AngMomBra(1,xyz)-1)*ExpZi(1)*( &
|
||||
VRR2e(m,a1mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
- fZ(1)*VRR2e(m+1,a1mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY))
|
||||
endif
|
||||
!------------------------------------------------------------------------
|
||||
! 2nd vertical recurrence relation (5 terms): (a0|c+0)^m
|
||||
!------------------------------------------------------------------------
|
||||
else
|
||||
do i=1,2
|
||||
do j=1,3
|
||||
a2m(i,j) = AngMomBra(i,j)
|
||||
a2mm(i,j) = AngMomBra(i,j)
|
||||
a1m2m(i,j) = AngMomBra(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomBra(2,1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomBra(2,2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomBra(2,3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRR2e!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
a2m(2,xyz) = a2m(2,xyz) - 1
|
||||
a2mm(2,xyz) = a2mm(2,xyz) - 2
|
||||
a1m2m(1,xyz) = a1m2m(1,xyz) - 1
|
||||
a1m2m(2,xyz) = a1m2m(2,xyz) - 1
|
||||
if(AngMomBra(2,xyz) <= 0) then
|
||||
a1a2 = 0d0
|
||||
elseif(AngMomBra(2,xyz) == 1) then
|
||||
a1a2 = CenterZA(2,xyz)*VRR2e(m,a2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
+ fZ(2)*CenterY(1,2,xyz)*VRR2e(m+1,a2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY)
|
||||
else
|
||||
a1a2 = CenterZA(2,xyz)*VRR2e(m,a2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
+ fZ(2)*CenterY(1,2,xyz)*VRR2e(m+1,a2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
+ 0.5d0*dble(AngMomBra(2,xyz)-1)*ExpZi(2)*( &
|
||||
VRR2e(m,a2mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
||||
- fZ(2)*VRR2e(m+1,a2mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY))
|
||||
endif
|
||||
if(AngMomBra(1,xyz) > 0) &
|
||||
a1a2 = a1a2 &
|
||||
+ 0.5d0*dble(AngMomBra(1,xyz))*fZ(2)*ExpZi(1)*VRR2e(m+1,a1m2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY)
|
||||
endif
|
||||
|
||||
end function VRR2e
|
174
src/IntPak/VRR3e.f90
Normal file
174
src/IntPak/VRR3e.f90
Normal file
@ -0,0 +1,174 @@
|
||||
recursive function VRR3e(m,AngMomBra,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
result(a1a2a3)
|
||||
|
||||
! Vertical recurrence relations for three-electron integrals
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: m
|
||||
integer,intent(in) :: AngMomBra(3,3)
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: Om(0:maxm),ExpZ(3),CenterZA(3,3)
|
||||
double precision,intent(in) :: DY0(3),DY1(3),D2Y0(3,3),D2Y1(3,3)
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: NegAngMomBra(3)
|
||||
integer :: TotAngMomBra(3)
|
||||
integer :: a1m(3,3),a2m(3,3),a3m(3,3)
|
||||
integer :: a1mm(3,3),a2mm(3,3),a3mm(3,3)
|
||||
integer :: a1m2m(3,3),a1m3m(3,3),a2m3m(3,3)
|
||||
integer :: i,j,xyz
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: a1a2a3
|
||||
|
||||
do i=1,3
|
||||
NegAngMomBra(i) = AngMomBra(i,1) < 0 .or. AngMomBra(i,2) < 0 .or. AngMomBra(i,3) < 0
|
||||
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
||||
enddo
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Termination condition
|
||||
!------------------------------------------------------------------------
|
||||
if(NegAngMomBra(1) .or. NegAngMomBra(2) .or. NegAngMomBra(3)) then
|
||||
a1a2a3 = 0d0
|
||||
!------------------------------------------------------------------------
|
||||
! Fundamental integral: (000|000)^m
|
||||
!------------------------------------------------------------------------
|
||||
elseif(TotAngMomBra(1) == 0 .and. TotAngMomBra(2) == 0 .and. TotAngMomBra(3) == 0) then
|
||||
a1a2a3 = Om(m)
|
||||
!------------------------------------------------------------------------
|
||||
! 1st vertical recurrence relation (4 terms): (a1+00|000)^m
|
||||
!------------------------------------------------------------------------
|
||||
elseif(TotAngMomBra(2) == 0 .and. TotAngMomBra(3) == 0) then
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
a1m(i,j) = AngMomBra(i,j)
|
||||
a1mm(i,j) = AngMomBra(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomBra(1,1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomBra(1,2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomBra(1,3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRR3e!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
a1m(1,xyz) = a1m(1,xyz) - 1
|
||||
a1mm(1,xyz) = a1mm(1,xyz) - 2
|
||||
if(AngMomBra(1,xyz) == 0) then
|
||||
a1a2a3 = 0d0
|
||||
elseif(AngMomBra(1,xyz) == 1) then
|
||||
a1a2a3 = (CenterZA(1,xyz) - DY0(1))*VRR3e(m, a1m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- (DY1(1) - DY0(1))*VRR3e(m+1,a1m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
else
|
||||
a1a2a3 = (CenterZA(1,xyz) - DY0(1))*VRR3e(m, a1m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- (DY1(1) - DY0(1))*VRR3e(m+1,a1m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
+ dble(AngMomBra(1,xyz)-1)*(0.5d0/ExpZ(1) - D2Y0(1,1))*VRR3e(m, a1mm,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- dble(AngMomBra(1,xyz)-1)*(D2Y1(1,1) - D2Y0(1,1))*VRR3e(m+1,a1mm,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
!------------------------------------------------------------------------
|
||||
! 2nd vertical recurrence relation (6 terms): (a1a2+0|000)^m
|
||||
!------------------------------------------------------------------------
|
||||
elseif(TotAngMomBra(3) == 0) then
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
a2m(i,j) = AngMomBra(i,j)
|
||||
a2mm(i,j) = AngMomBra(i,j)
|
||||
a1m2m(i,j) = AngMomBra(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomBra(2,1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomBra(2,2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomBra(2,3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRR3e!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
a2m(2,xyz) = a2m(2,xyz) - 1
|
||||
a2mm(2,xyz) = a2mm(2,xyz) - 2
|
||||
a1m2m(1,xyz) = a1m2m(1,xyz) - 1
|
||||
a1m2m(2,xyz) = a1m2m(2,xyz) - 1
|
||||
if(AngMomBra(2,xyz) == 0) then
|
||||
a1a2a3 = 0d0
|
||||
elseif(AngMomBra(2,xyz) == 1) then
|
||||
a1a2a3 = (CenterZA(2,xyz) - DY0(2))*VRR3e(m, a2m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- (DY1(2) - DY0(2))*VRR3e(m+1,a2m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
else
|
||||
a1a2a3 = (CenterZA(2,xyz) - DY0(2))*VRR3e(m, a2m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- (DY1(2) - DY0(2))*VRR3e(m+1,a2m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
+ dble(AngMomBra(2,xyz)-1)*(0.5d0/ExpZ(2) - D2Y0(2,2))*VRR3e(m, a2mm, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- dble(AngMomBra(2,xyz)-1)*(D2Y1(2,2) - D2Y0(2,2))*VRR3e(m+1,a2mm, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
if(AngMomBra(1,xyz) > 0) &
|
||||
a1a2a3 = a1a2a3 &
|
||||
+ dble(AngMomBra(1,xyz))*(-D2Y0(2,1))*VRR3e(m, a1m2m,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- dble(AngMomBra(1,xyz))*(D2Y1(2,1) - D2Y0(2,1))*VRR3e(m+1,a1m2m,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
!------------------------------------------------------------------------
|
||||
! 3rd vertical recurrence relation (8 terms): (a1a2a3+|000)^m
|
||||
!------------------------------------------------------------------------
|
||||
else
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
a3m(i,j) = AngMomBra(i,j)
|
||||
a3mm(i,j) = AngMomBra(i,j)
|
||||
a1m3m(i,j) = AngMomBra(i,j)
|
||||
a2m3m(i,j) = AngMomBra(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomBra(3,1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomBra(3,2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomBra(3,3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRR3e!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
a3m(3,xyz) = a3m(3,xyz) - 1
|
||||
a3mm(3,xyz) = a3mm(3,xyz) - 2
|
||||
a1m3m(1,xyz) = a1m3m(1,xyz) - 1
|
||||
a1m3m(3,xyz) = a1m3m(3,xyz) - 1
|
||||
a2m3m(2,xyz) = a2m3m(2,xyz) - 1
|
||||
a2m3m(3,xyz) = a2m3m(3,xyz) - 1
|
||||
if(AngMomBra(3,xyz) == 0) then
|
||||
a1a2a3 = 0d0
|
||||
elseif(AngMomBra(3,xyz) == 1) then
|
||||
a1a2a3 = (CenterZA(3,xyz) - DY0(3))*VRR3e(m, a3m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- (DY1(3) - DY0(3))*VRR3e(m+1,a3m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
else
|
||||
a1a2a3 = (CenterZA(3,xyz) - DY0(3))*VRR3e(m, a3m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- (DY1(3) - DY0(3))*VRR3e(m+1,a3m, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
+ dble(AngMomBra(3,xyz)-1)*(0.5d0/ExpZ(3) - D2Y0(3,3))*VRR3e(m, a3mm, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- dble(AngMomBra(3,xyz)-1)*(D2Y1(3,3) - D2Y0(3,3))*VRR3e(m+1,a3mm, maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
if(dble(AngMomBra(1,xyz)) > 0) &
|
||||
a1a2a3 = a1a2a3 &
|
||||
+ dble(AngMomBra(1,xyz))*(-D2Y0(3,1))*VRR3e(m, a1m3m,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- dble(AngMomBra(1,xyz))*(D2Y1(3,1) - D2Y0(3,1))*VRR3e(m+1,a1m3m,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
if(dble(AngMomBra(2,xyz)) > 0) &
|
||||
a1a2a3 = a1a2a3 &
|
||||
+ dble(AngMomBra(2,xyz))*(-D2Y0(3,2))*VRR3e(m, a2m3m,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1) &
|
||||
- dble(AngMomBra(2,xyz))*(D2Y1(3,2) - D2Y0(3,2))*VRR3e(m+1,a2m3m,maxm,Om,ExpZ,CenterZA,DY0,DY1,D2Y0,D2Y1)
|
||||
endif
|
||||
|
||||
end function VRR3e
|
36
src/IntPak/VRRF12.f90
Normal file
36
src/IntPak/VRRF12.f90
Normal file
@ -0,0 +1,36 @@
|
||||
recursive function VRRF12(AngMomA,AngMomC,fG,gP,gG,gQ,ExpPGQi,CenterPQSq,CenterRA,CenterRC) &
|
||||
result(Gac)
|
||||
|
||||
! Compute two-electron integrals over Gaussian geminals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: AngMomA,AngMomC
|
||||
double precision,intent(in) :: ExpPGQi
|
||||
double precision,intent(in) :: fG,gP,gG,gQ
|
||||
double precision,intent(in) :: CenterPQSq,CenterRA,CenterRC
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Gac
|
||||
|
||||
if(AngMomA < 0 .or. AngMomC < 0) then
|
||||
Gac = 0d0
|
||||
else
|
||||
if(AngMomA == 0 .and. AngMomC == 0) then
|
||||
Gac = sqrt(fG)*exp(-CenterPQSq/ExpPGQi)
|
||||
else
|
||||
If(AngMomC == 0) then
|
||||
Gac = CenterRA*VRRF12(AngMomA-1,AngMomC,fG,gP,gG,gQ,ExpPGQi,CenterPQSq,CenterRA,CenterRC) &
|
||||
+ dble(AngMomA-1)*gP*VRRF12(AngMomA-2,AngMomC,fG,gP,gG,gQ,ExpPGQi,CenterPQSq,CenterRA,CenterRC)
|
||||
else
|
||||
Gac = CenterRC*VRRF12(AngMomA,AngMomC-1,fG,gP,gG,gQ,ExpPGQi,CenterPQSq,CenterRA,CenterRC) &
|
||||
+ dble(AngMomA)*gG*VRRF12(AngMomA-1,AngMomC-1,fG,gP,gG,gQ,ExpPGQi,CenterPQSq,CenterRA,CenterRC) &
|
||||
+ dble(AngMomC-1)*gQ*VRRF12(AngMomA,AngMomC-2,fG,gP,gG,gQ,ExpPGQi,CenterPQSq,CenterRA,CenterRC)
|
||||
endIf
|
||||
endIf
|
||||
endIf
|
||||
|
||||
end function VRRF12
|
76
src/IntPak/VRRNuc.f90
Normal file
76
src/IntPak/VRRNuc.f90
Normal file
@ -0,0 +1,76 @@
|
||||
recursive function VRRNuc(m,AngMomA,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
result(Ga)
|
||||
|
||||
! Compute two-electron integrals over Gaussian geminals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: m
|
||||
integer,intent(in) :: AngMomA(3)
|
||||
integer,intent(in) :: maxm
|
||||
double precision,intent(in) :: Om(0:maxm)
|
||||
double precision,intent(in) :: ExpPi
|
||||
double precision,intent(in) :: CenterAB(3),CenterPA(3),CenterPC(3)
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: NegAngMomA
|
||||
integer :: TotAngMomA
|
||||
integer :: xyz,am(3),amm(3)
|
||||
integer :: i
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ga
|
||||
|
||||
NegAngMomA = AngMomA(1) < 0 .or. AngMomA(2) < 0 .or. AngMomA(3) < 0
|
||||
TotAngMomA = AngMomA(1) + AngMomA(2) + AngMomA(3)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Termination condition
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(NegAngMomA) then
|
||||
|
||||
Ga = 0d0
|
||||
|
||||
else
|
||||
!------------------------------------------------------------------------
|
||||
! Fundamental integral: (0|0)^m
|
||||
!------------------------------------------------------------------------
|
||||
if(TotAngMomA == 0) then
|
||||
|
||||
Ga = Om(m)
|
||||
|
||||
else
|
||||
!------------------------------------------------------------------------
|
||||
! Vertical recurrence relation (4 terms): (a+|0)^m
|
||||
!------------------------------------------------------------------------
|
||||
do i=1,3
|
||||
am(i) = AngMomA(i)
|
||||
amm(i) = AngMomA(i)
|
||||
enddo
|
||||
! Loop over cartesian directions
|
||||
xyz = 0
|
||||
if (AngMomA(1) > 0) then
|
||||
xyz = 1
|
||||
elseif(AngMomA(2) > 0) then
|
||||
xyz = 2
|
||||
elseif(AngMomA(3) > 0) then
|
||||
xyz = 3
|
||||
else
|
||||
write(*,*) 'xyz = 0 in VRRNuc!'
|
||||
endif
|
||||
! End loop over cartesian directions
|
||||
am(xyz) = am(xyz) - 1
|
||||
amm(xyz) = amm(xyz) - 2
|
||||
Ga = CenterPA(xyz)*VRRNuc(m,am,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
+ 0.5d0*dble(am(xyz))*ExpPi*VRRNuc(m,amm,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
- CenterPC(xyz)*ExpPi*VRRNuc(m+1,am,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC) &
|
||||
- 0.5d0*dble(am(xyz))*ExpPi**2*VRRNuc(m+1,amm,maxm,Om,ExpPi,CenterAB,CenterPA,CenterPC)
|
||||
endif
|
||||
endif
|
||||
|
||||
end function VRRNuc
|
28
src/IntPak/VRROv.f90
Normal file
28
src/IntPak/VRROv.f90
Normal file
@ -0,0 +1,28 @@
|
||||
recursive function VRROv(AngMomA,ExpPi,CenterPA) &
|
||||
result(Ga)
|
||||
|
||||
! Compute two-electron integrals over Gaussian geminals
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: AngMomA
|
||||
double precision,intent(in) :: ExpPi
|
||||
double precision,intent(in) :: CenterPA
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ga
|
||||
|
||||
if(AngMomA < 0) then
|
||||
Ga = 0d0
|
||||
else
|
||||
if(AngMomA == 0) then
|
||||
Ga = 1d0
|
||||
else
|
||||
Ga = CenterPA*VRROv(AngMomA-1,ExpPi,CenterPA) + 0.5d0*dble(AngMomA-1)*ExpPi*VRROv(AngMomA-2,ExpPi,CenterPA)
|
||||
endif
|
||||
endif
|
||||
|
||||
end function VRROv
|
BIN
src/IntPak/obj/CalcBoysF.o
Normal file
BIN
src/IntPak/obj/CalcBoysF.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/CalcNBasis.o
Normal file
BIN
src/IntPak/obj/CalcNBasis.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/CalcOm.o
Normal file
BIN
src/IntPak/obj/CalcOm.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/CalcOm3e.o
Normal file
BIN
src/IntPak/obj/CalcOm3e.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/CalcOmERI.o
Normal file
BIN
src/IntPak/obj/CalcOmERI.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/CalcOmErf.o
Normal file
BIN
src/IntPak/obj/CalcOmErf.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/CalcOmNuc.o
Normal file
BIN
src/IntPak/obj/CalcOmNuc.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/CalcOmYuk.o
Normal file
BIN
src/IntPak/obj/CalcOmYuk.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/Compute2eInt.o
Normal file
BIN
src/IntPak/obj/Compute2eInt.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/Compute3eInt.o
Normal file
BIN
src/IntPak/obj/Compute3eInt.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/Compute4eInt.o
Normal file
BIN
src/IntPak/obj/Compute4eInt.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/ComputeKin.o
Normal file
BIN
src/IntPak/obj/ComputeKin.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/ComputeNuc.o
Normal file
BIN
src/IntPak/obj/ComputeNuc.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/ComputeOv.o
Normal file
BIN
src/IntPak/obj/ComputeOv.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/FormVRR3e.o
Normal file
BIN
src/IntPak/obj/FormVRR3e.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/G2eInt.o
Normal file
BIN
src/IntPak/obj/G2eInt.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/G3eInt.o
Normal file
BIN
src/IntPak/obj/G3eInt.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/GF12Int.o
Normal file
BIN
src/IntPak/obj/GF12Int.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/GenerateShell.o
Normal file
BIN
src/IntPak/obj/GenerateShell.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/HRR2e.o
Normal file
BIN
src/IntPak/obj/HRR2e.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/HRR3e.o
Normal file
BIN
src/IntPak/obj/HRR3e.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/HRRF12.o
Normal file
BIN
src/IntPak/obj/HRRF12.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/HRRNuc.o
Normal file
BIN
src/IntPak/obj/HRRNuc.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/HRROv.o
Normal file
BIN
src/IntPak/obj/HRROv.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/IntPak.o
Normal file
BIN
src/IntPak/obj/IntPak.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/KinInt.o
Normal file
BIN
src/IntPak/obj/KinInt.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/NormCoeff.o
Normal file
BIN
src/IntPak/obj/NormCoeff.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/NucInt.o
Normal file
BIN
src/IntPak/obj/NucInt.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/OvInt.o
Normal file
BIN
src/IntPak/obj/OvInt.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/RRKin.o
Normal file
BIN
src/IntPak/obj/RRKin.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/ReadBasis.o
Normal file
BIN
src/IntPak/obj/ReadBasis.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/ReadGeminal.o
Normal file
BIN
src/IntPak/obj/ReadGeminal.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/ReadGeometry.o
Normal file
BIN
src/IntPak/obj/ReadGeometry.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/ReadNAtoms.o
Normal file
BIN
src/IntPak/obj/ReadNAtoms.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/S2eInt.o
Normal file
BIN
src/IntPak/obj/S2eInt.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/S3eInt.o
Normal file
BIN
src/IntPak/obj/S3eInt.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/VRR2e.o
Normal file
BIN
src/IntPak/obj/VRR2e.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/VRR3e.o
Normal file
BIN
src/IntPak/obj/VRR3e.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/VRRF12.o
Normal file
BIN
src/IntPak/obj/VRRF12.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/VRRNuc.o
Normal file
BIN
src/IntPak/obj/VRRNuc.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/VRROv.o
Normal file
BIN
src/IntPak/obj/VRROv.o
Normal file
Binary file not shown.
BIN
src/IntPak/obj/utils.o
Normal file
BIN
src/IntPak/obj/utils.o
Normal file
Binary file not shown.
385
src/IntPak/utils.f90
Normal file
385
src/IntPak/utils.f90
Normal file
@ -0,0 +1,385 @@
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
function KroneckerDelta(i,j) result(delta)
|
||||
|
||||
! Kronecker Delta
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: i,j
|
||||
|
||||
|
||||
! Output variables
|
||||
|
||||
integer :: delta
|
||||
|
||||
if(i == j) then
|
||||
delta = 1
|
||||
else
|
||||
delta = 0
|
||||
endif
|
||||
|
||||
end function KroneckerDelta
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
subroutine matout(m,n,A)
|
||||
|
||||
! Print the MxN array A
|
||||
|
||||
implicit none
|
||||
|
||||
integer,parameter :: ncol = 5
|
||||
double precision,parameter :: small = 1d-10
|
||||
integer,intent(in) :: m,n
|
||||
double precision,intent(in) :: A(m,n)
|
||||
double precision :: B(ncol)
|
||||
integer :: ilower,iupper,num,i,j
|
||||
|
||||
do ilower=1,n,ncol
|
||||
iupper = min(ilower + ncol - 1,n)
|
||||
num = iupper - ilower + 1
|
||||
write(*,'(3X,10(7X,I6))') (j,j=ilower,iupper)
|
||||
do i=1,m
|
||||
do j=ilower,iupper
|
||||
B(j-ilower+1) = A(i,j)
|
||||
enddo
|
||||
do j=1,num
|
||||
if(abs(B(j)) < small) B(j) = 0d0
|
||||
enddo
|
||||
write(*,'(I7,10F15.8)') i,(B(j),j=1,num)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine matout
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
subroutine CalcTrAB(n,A,B,Tr)
|
||||
|
||||
! Calculate the trace of the square matrix A.B
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: n
|
||||
double precision,intent(in) :: A(n,n),B(n,n)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,j
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Tr
|
||||
|
||||
Tr = 0d0
|
||||
do i=1,n
|
||||
do j=1,n
|
||||
Tr = Tr + A(i,j)*B(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine CalcTrAB
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
function EpsilonSwitch(i,j) result(delta)
|
||||
|
||||
! Epsilon function
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: i,j
|
||||
integer :: delta
|
||||
|
||||
if(i <= j) then
|
||||
delta = 1
|
||||
else
|
||||
delta = -1
|
||||
endif
|
||||
|
||||
end function EpsilonSwitch
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
function KappaCross(i,j,k) result(kappa)
|
||||
|
||||
! kappa(i,j,k) = eps(i,j) delta(i,k) - eps(k,i) delta(i,j)
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: i,j,k
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: EpsilonSwitch,KroneckerDelta
|
||||
double precision :: kappa
|
||||
|
||||
kappa = dble(EpsilonSwitch(i,j)*KroneckerDelta(i,k) - EpsilonSwitch(k,i)*KroneckerDelta(i,j))
|
||||
|
||||
end function KappaCross
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
subroutine CalcInv3(a,det)
|
||||
|
||||
! Calculate the inverse and the determinant of a 3x3 matrix
|
||||
|
||||
implicit none
|
||||
|
||||
double precision,intent(inout) :: a(3,3)
|
||||
double precision, intent(inout) :: det
|
||||
double precision :: b(3,3)
|
||||
integer :: i,j
|
||||
|
||||
det = a(1,1)*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) &
|
||||
- a(1,2)*(a(2,1)*a(3,3)-a(2,3)*a(3,1)) &
|
||||
+ a(1,3)*(a(2,1)*a(3,2)-a(2,2)*a(3,1))
|
||||
|
||||
do i=1,3
|
||||
b(i,1) = a(i,1)
|
||||
b(i,2) = a(i,2)
|
||||
b(i,3) = a(i,3)
|
||||
enddo
|
||||
|
||||
a(1,1) = b(2,2)*b(3,3) - b(2,3)*b(3,2)
|
||||
a(2,1) = b(2,3)*b(3,1) - b(2,1)*b(3,3)
|
||||
a(3,1) = b(2,1)*b(3,2) - b(2,2)*b(3,1)
|
||||
|
||||
a(1,2) = b(1,3)*b(3,2) - b(1,2)*b(3,3)
|
||||
a(2,2) = b(1,1)*b(3,3) - b(1,3)*b(3,1)
|
||||
a(3,2) = b(1,2)*b(3,1) - b(1,1)*b(3,2)
|
||||
|
||||
a(1,3) = b(1,2)*b(2,3) - b(1,3)*b(2,2)
|
||||
a(2,3) = b(1,3)*b(2,1) - b(1,1)*b(2,3)
|
||||
a(3,3) = b(1,1)*b(2,2) - b(1,2)*b(2,1)
|
||||
|
||||
do i=1,3
|
||||
do j=1,3
|
||||
a(i,j) = a(i,j)/det
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine CalcInv3
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
subroutine CalcInv4(a,det)
|
||||
|
||||
implicit none
|
||||
|
||||
double precision,intent(inout) :: a(4,4)
|
||||
double precision,intent(inout) :: det
|
||||
double precision :: b(4,4)
|
||||
integer :: i,j
|
||||
|
||||
det = a(1,1)*(a(2,2)*(a(3,3)*a(4,4)-a(3,4)*a(4,3)) &
|
||||
-a(2,3)*(a(3,2)*a(4,4)-a(3,4)*a(4,2)) &
|
||||
+a(2,4)*(a(3,2)*a(4,3)-a(3,3)*a(4,2))) &
|
||||
- a(1,2)*(a(2,1)*(a(3,3)*a(4,4)-a(3,4)*a(4,3)) &
|
||||
-a(2,3)*(a(3,1)*a(4,4)-a(3,4)*a(4,1)) &
|
||||
+a(2,4)*(a(3,1)*a(4,3)-a(3,3)*a(4,1))) &
|
||||
+ a(1,3)*(a(2,1)*(a(3,2)*a(4,4)-a(3,4)*a(4,2)) &
|
||||
-a(2,2)*(a(3,1)*a(4,4)-a(3,4)*a(4,1)) &
|
||||
+a(2,4)*(a(3,1)*a(4,2)-a(3,2)*a(4,1))) &
|
||||
- a(1,4)*(a(2,1)*(a(3,2)*a(4,3)-a(3,3)*a(4,2)) &
|
||||
-a(2,2)*(a(3,1)*a(4,3)-a(3,3)*a(4,1)) &
|
||||
+a(2,3)*(a(3,1)*a(4,2)-a(3,2)*a(4,1)))
|
||||
do i=1,4
|
||||
b(1,i) = a(1,i)
|
||||
b(2,i) = a(2,i)
|
||||
b(3,i) = a(3,i)
|
||||
b(4,i) = a(4,i)
|
||||
enddo
|
||||
|
||||
a(1,1) = b(2,2)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))-b(2,3)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))+b(2,4)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))
|
||||
a(2,1) = -b(2,1)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))+b(2,3)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))-b(2,4)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))
|
||||
a(3,1) = b(2,1)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))-b(2,2)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))+b(2,4)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
|
||||
a(4,1) = -b(2,1)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))+b(2,2)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))-b(2,3)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
|
||||
|
||||
a(1,2) = -b(1,2)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))+b(1,3)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))-b(1,4)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))
|
||||
a(2,2) = b(1,1)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))-b(1,3)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))+b(1,4)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))
|
||||
a(3,2) = -b(1,1)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))+b(1,2)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))-b(1,4)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
|
||||
a(4,2) = b(1,1)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))-b(1,2)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))+b(1,3)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
|
||||
|
||||
a(1,3) = b(1,2)*(b(2,3)*b(4,4)-b(2,4)*b(4,3))-b(1,3)*(b(2,2)*b(4,4)-b(2,4)*b(4,2))+b(1,4)*(b(2,2)*b(4,3)-b(2,3)*b(4,2))
|
||||
a(2,3) = -b(1,1)*(b(2,3)*b(4,4)-b(2,4)*b(4,3))+b(1,3)*(b(2,1)*b(4,4)-b(2,4)*b(4,1))-b(1,4)*(b(2,1)*b(4,3)-b(2,3)*b(4,1))
|
||||
a(3,3) = b(1,1)*(b(2,2)*b(4,4)-b(2,4)*b(4,2))-b(1,2)*(b(2,1)*b(4,4)-b(2,4)*b(4,1))+b(1,4)*(b(2,1)*b(4,2)-b(2,2)*b(4,1))
|
||||
a(4,3) = -b(1,1)*(b(2,2)*b(4,3)-b(2,3)*b(4,2))+b(1,2)*(b(2,1)*b(4,3)-b(2,3)*b(4,1))-b(1,3)*(b(2,1)*b(4,2)-b(2,2)*b(4,1))
|
||||
|
||||
a(1,4) = -b(1,2)*(b(2,3)*b(3,4)-b(2,4)*b(3,3))+b(1,3)*(b(2,2)*b(3,4)-b(2,4)*b(3,2))-b(1,4)*(b(2,2)*b(3,3)-b(2,3)*b(3,2))
|
||||
a(2,4) = b(1,1)*(b(2,3)*b(3,4)-b(2,4)*b(3,3))-b(1,3)*(b(2,1)*b(3,4)-b(2,4)*b(3,1))+b(1,4)*(b(2,1)*b(3,3)-b(2,3)*b(3,1))
|
||||
a(3,4) = -b(1,1)*(b(2,2)*b(3,4)-b(2,4)*b(3,2))+b(1,2)*(b(2,1)*b(3,4)-b(2,4)*b(3,1))-b(1,4)*(b(2,1)*b(3,2)-b(2,2)*b(3,1))
|
||||
a(4,4) = b(1,1)*(b(2,2)*b(3,3)-b(2,3)*b(3,2))-b(1,2)*(b(2,1)*b(3,3)-b(2,3)*b(3,1))+b(1,3)*(b(2,1)*b(3,2)-b(2,2)*b(3,1))
|
||||
|
||||
do i=1,4
|
||||
do j=1,4
|
||||
a(i,j) = a(i,j)/det
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine CalcInv4
|
||||
|
||||
|
||||
!double precision function binom(i,j)
|
||||
! implicit none
|
||||
! integer,intent(in) :: i,j
|
||||
! double precision :: logfact
|
||||
! integer, save :: ifirst
|
||||
! double precision, save :: memo(0:15,0:15)
|
||||
! integer :: k,l
|
||||
! if (ifirst == 0) then
|
||||
! ifirst = 1
|
||||
! do k=0,15
|
||||
! do l=0,15
|
||||
! memo(k,l) = dexp( logfact(k)-logfact(l)-logfact(k-l) )
|
||||
! enddo
|
||||
! enddo
|
||||
! endif
|
||||
! if ( (i<=15).and.(j<=15) ) then
|
||||
! binom = memo(i,j)
|
||||
! else
|
||||
! binom = dexp( logfact(i)-logfact(j)-logfact(i-j) )
|
||||
! endif
|
||||
!end
|
||||
!
|
||||
!double precision function fact(n)
|
||||
! implicit none
|
||||
! integer :: n
|
||||
! double precision, save :: memo(1:100)
|
||||
! integer, save :: memomax = 1
|
||||
!
|
||||
! if (n<=memomax) then
|
||||
! if (n<2) then
|
||||
! fact = 1.d0
|
||||
! else
|
||||
! fact = memo(n)
|
||||
! endif
|
||||
! return
|
||||
! endif
|
||||
!
|
||||
! integer :: i
|
||||
! memo(1) = 1.d0
|
||||
! do i=memomax+1,min(n,100)
|
||||
! memo(i) = memo(i-1)*dble(i)
|
||||
! enddo
|
||||
! memomax = min(n,100)
|
||||
! double precision :: logfact
|
||||
! fact = dexp(logfact(n))
|
||||
!end function
|
||||
!
|
||||
!double precision function logfact(n)
|
||||
! implicit none
|
||||
! integer :: n
|
||||
! double precision, save :: memo(1:100)
|
||||
! integer, save :: memomax = 1
|
||||
!
|
||||
! if (n<=memomax) then
|
||||
! if (n<2) then
|
||||
! logfact = 0.d0
|
||||
! else
|
||||
! logfact = memo(n)
|
||||
! endif
|
||||
! return
|
||||
! endif
|
||||
!
|
||||
! integer :: i
|
||||
! memo(1) = 0.d0
|
||||
! do i=memomax+1,min(n,100)
|
||||
! memo(i) = memo(i-1)+dlog(dble(i))
|
||||
! enddo
|
||||
! memomax = min(n,100)
|
||||
! logfact = memo(memomax)
|
||||
! do i=101,n
|
||||
! logfact += dlog(dble(i))
|
||||
! enddo
|
||||
!end function
|
||||
!
|
||||
!double precision function dble_fact(n)
|
||||
! implicit none
|
||||
! integer :: n
|
||||
! double precision :: dble_fact_even, dble_fact_odd
|
||||
!
|
||||
! dble_fact = 1.d0
|
||||
!
|
||||
! if(n.lt.0) return
|
||||
!
|
||||
! if(iand(n,1).eq.0)then
|
||||
! dble_fact = dble_fact_even(n)
|
||||
! else
|
||||
! dble_fact= dble_fact_odd(n)
|
||||
! endif
|
||||
!
|
||||
!end function
|
||||
!
|
||||
!double precision function dble_fact_even(n) result(fact2)
|
||||
! implicit none
|
||||
! integer :: n,k
|
||||
! double precision, save :: memo(0:100)
|
||||
! integer, save :: memomax = 0
|
||||
! double precision :: prod
|
||||
!
|
||||
!
|
||||
! if (n <= memomax) then
|
||||
! if (n < 2) then
|
||||
! fact2 = 1.d0
|
||||
! else
|
||||
! fact2 = memo(n)
|
||||
! endif
|
||||
! return
|
||||
! endif
|
||||
!
|
||||
! integer :: i
|
||||
! memo(0)=1.d0
|
||||
! memo(1)=1.d0
|
||||
! do i=memomax+2,min(n,100),2
|
||||
! memo(i) = memo(i-2)* dble(i)
|
||||
! enddo
|
||||
! memomax = min(n,100)
|
||||
! fact2 = memo(memomax)
|
||||
!
|
||||
! if (n > 100) then
|
||||
! double precision :: dble_logfact
|
||||
! fact2 = dexp(dble_logfact(n))
|
||||
! endif
|
||||
!
|
||||
!end function
|
||||
!
|
||||
!double precision function dble_fact_odd(n) result(fact2)
|
||||
! implicit none
|
||||
! integer :: n
|
||||
! double precision, save :: memo(1:100)
|
||||
! integer, save :: memomax = 1
|
||||
!
|
||||
! if (n<=memomax) then
|
||||
! if (n<3) then
|
||||
! fact2 = 1.d0
|
||||
! else
|
||||
! fact2 = memo(n)
|
||||
! endif
|
||||
! return
|
||||
! endif
|
||||
!
|
||||
! integer :: i
|
||||
! memo(1) = 1.d0
|
||||
! do i=memomax+2,min(n,99),2
|
||||
! memo(i) = memo(i-2)* dble(i)
|
||||
! enddo
|
||||
! memomax = min(n,99)
|
||||
! fact2 = memo(memomax)
|
||||
!
|
||||
! if (n > 99) then
|
||||
! double precision :: dble_logfact
|
||||
! fact2 = dexp(dble_logfact(n))
|
||||
! endif
|
||||
!
|
||||
!end function
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user