mirror of
https://github.com/pfloos/quack
synced 2025-01-10 21:18:33 +01:00
-w
This commit is contained in:
parent
10e316b140
commit
84e01bfcb6
76
input/basis
76
input/basis
@ -1,71 +1,7 @@
|
|||||||
1 9
|
1 2
|
||||||
S 8
|
S 3
|
||||||
1 9046.0000000 0.0007000
|
1 38.4216340 0.0237660
|
||||||
2 1357.0000000 0.0053890
|
2 5.7780300 0.1546790
|
||||||
3 309.3000000 0.0274060
|
3 1.2417740 0.4696300
|
||||||
4 87.7300000 0.1032070
|
|
||||||
5 28.5600000 0.2787230
|
|
||||||
6 10.2100000 0.4485400
|
|
||||||
7 3.8380000 0.2782380
|
|
||||||
8 0.7466000 0.0154400
|
|
||||||
S 8
|
|
||||||
1 9046.0000000 -0.0001530
|
|
||||||
2 1357.0000000 -0.0012080
|
|
||||||
3 309.3000000 -0.0059920
|
|
||||||
4 87.7300000 -0.0245440
|
|
||||||
5 28.5600000 -0.0674590
|
|
||||||
6 10.2100000 -0.1580780
|
|
||||||
7 3.8380000 -0.1218310
|
|
||||||
8 0.7466000 0.5490030
|
|
||||||
S 1
|
S 1
|
||||||
1 0.2248000 1.0000000
|
1 0.2979640 1.0000000
|
||||||
S 1
|
|
||||||
1 0.0612400 1.0000000
|
|
||||||
P 3
|
|
||||||
1 13.5500000 0.0399190
|
|
||||||
2 2.9170000 0.2171690
|
|
||||||
3 0.7973000 0.5103190
|
|
||||||
P 1
|
|
||||||
1 0.2185000 1.0000000
|
|
||||||
P 1
|
|
||||||
1 0.0561100 1.0000000
|
|
||||||
D 1
|
|
||||||
1 0.8170000 1.0000000
|
|
||||||
D 1
|
|
||||||
1 0.2300000 1.0000000
|
|
||||||
2 9
|
|
||||||
S 8
|
|
||||||
1 9046.0000000 0.0007000
|
|
||||||
2 1357.0000000 0.0053890
|
|
||||||
3 309.3000000 0.0274060
|
|
||||||
4 87.7300000 0.1032070
|
|
||||||
5 28.5600000 0.2787230
|
|
||||||
6 10.2100000 0.4485400
|
|
||||||
7 3.8380000 0.2782380
|
|
||||||
8 0.7466000 0.0154400
|
|
||||||
S 8
|
|
||||||
1 9046.0000000 -0.0001530
|
|
||||||
2 1357.0000000 -0.0012080
|
|
||||||
3 309.3000000 -0.0059920
|
|
||||||
4 87.7300000 -0.0245440
|
|
||||||
5 28.5600000 -0.0674590
|
|
||||||
6 10.2100000 -0.1580780
|
|
||||||
7 3.8380000 -0.1218310
|
|
||||||
8 0.7466000 0.5490030
|
|
||||||
S 1
|
|
||||||
1 0.2248000 1.0000000
|
|
||||||
S 1
|
|
||||||
1 0.0612400 1.0000000
|
|
||||||
P 3
|
|
||||||
1 13.5500000 0.0399190
|
|
||||||
2 2.9170000 0.2171690
|
|
||||||
3 0.7973000 0.5103190
|
|
||||||
P 1
|
|
||||||
1 0.2185000 1.0000000
|
|
||||||
P 1
|
|
||||||
1 0.0561100 1.0000000
|
|
||||||
D 1
|
|
||||||
1 0.8170000 1.0000000
|
|
||||||
D 1
|
|
||||||
1 0.2300000 1.0000000
|
|
||||||
|
|
||||||
|
@ -1,5 +1,4 @@
|
|||||||
# nAt nEla nElb nCore nRyd
|
# nAt nEla nElb nCore nRyd
|
||||||
2 7 7 0 0
|
1 1 1 0 0
|
||||||
# Znuc x y z
|
# Znuc x y z
|
||||||
N 0. 0. -1.04008632
|
He 0.0 0.0 0.0
|
||||||
N 0. 0. +1.04008632
|
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
2
|
1
|
||||||
|
|
||||||
N 0.0000000000 0.0000000000 -0.5503900175
|
He 0.0000000000 0.0000000000 0.0000000000
|
||||||
N 0.0000000000 0.0000000000 0.5503900175
|
|
||||||
|
@ -9,7 +9,7 @@
|
|||||||
# GF: maxSCF thresh DIIS n_diis lin renorm BSE TDA eta
|
# GF: maxSCF thresh DIIS n_diis lin renorm BSE TDA eta
|
||||||
256 0.00001 T 5 T 3 T T 0.00367493
|
256 0.00001 T 5 T 3 T T 0.00367493
|
||||||
# GW/GT: maxSCF thresh DIIS n_diis COHSEX SOSEX BSE TDA_W TDA G0W GW0 lin eta
|
# GW/GT: maxSCF thresh DIIS n_diis COHSEX SOSEX BSE TDA_W TDA G0W GW0 lin eta
|
||||||
256 0.00001 T 5 F F T F F F F T 0.00367493
|
256 0.00001 T 5 F F T T T F F T 0.00367493
|
||||||
# ACFDT: AC Kx XBS
|
# ACFDT: AC Kx XBS
|
||||||
F F T
|
F F T
|
||||||
# MCMP2: nMC nEq nWalk dt nPrint iSeed doDrift
|
# MCMP2: nMC nEq nWalk dt nPrint iSeed doDrift
|
||||||
|
@ -73,6 +73,7 @@ subroutine AOtoMO_integral_transform(nBas,c,ERI_AO_basis,ERI_MO_basis)
|
|||||||
do nu=1,nBas
|
do nu=1,nBas
|
||||||
ERI_MO_basis(i,j,k,l) = ERI_MO_basis(i,j,k,l) + c(nu,j)*scr(i,nu,k,l)
|
ERI_MO_basis(i,j,k,l) = ERI_MO_basis(i,j,k,l) + c(nu,j)*scr(i,nu,k,l)
|
||||||
enddo
|
enddo
|
||||||
|
print*,i,k,j,l,ERI_MO_basis(i,j,k,l)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
subroutine Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,A_dyn,B_dyn)
|
subroutine Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho, &
|
||||||
|
Ap,Am,Bp,Bm)
|
||||||
|
|
||||||
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
||||||
|
|
||||||
@ -18,18 +19,26 @@ subroutine Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,O
|
|||||||
! Local variables
|
! Local variables
|
||||||
|
|
||||||
integer :: maxS
|
integer :: maxS
|
||||||
double precision :: chi_A,chi_B,eps,eps_A,eps_B
|
double precision :: chi_A,chi_B
|
||||||
|
double precision :: chi_Ap,chi_Bp,eps_Ap,eps_Bp
|
||||||
|
double precision :: chi_Am,chi_Bm,eps_Am,eps_Bm
|
||||||
integer :: i,j,a,b,ia,jb,kc
|
integer :: i,j,a,b,ia,jb,kc
|
||||||
|
|
||||||
! Output variables
|
! Output variables
|
||||||
|
|
||||||
double precision,intent(out) :: A_dyn(nS,nS)
|
double precision,intent(out) :: Ap(nS,nS)
|
||||||
double precision,intent(out) :: B_dyn(nS,nS)
|
double precision,intent(out) :: Am(nS,nS)
|
||||||
|
|
||||||
|
double precision,intent(out) :: Bp(nS,nS)
|
||||||
|
double precision,intent(out) :: Bm(nS,nS)
|
||||||
|
|
||||||
! Initialization
|
! Initialization
|
||||||
|
|
||||||
A_dyn(:,:) = 0d0
|
Ap(:,:) = 0d0
|
||||||
B_dyn(:,:) = 0d0
|
Am(:,:) = 0d0
|
||||||
|
|
||||||
|
Bp(:,:) = 0d0
|
||||||
|
Bm(:,:) = 0d0
|
||||||
|
|
||||||
! Number of poles taken into account
|
! Number of poles taken into account
|
||||||
|
|
||||||
@ -56,31 +65,51 @@ subroutine Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,O
|
|||||||
|
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
A_dyn(ia,jb) = A_dyn(ia,jb) - 4d0*lambda*chi_A
|
Ap(ia,jb) = Ap(ia,jb) - 4d0*lambda*chi_A
|
||||||
B_dyn(ia,jb) = B_dyn(ia,jb) - 4d0*lambda*chi_B
|
Am(ia,jb) = Am(ia,jb) - 4d0*lambda*chi_A
|
||||||
|
|
||||||
chi_A = 0d0
|
Bp(ia,jb) = Bp(ia,jb) - 4d0*lambda*chi_B
|
||||||
chi_B = 0d0
|
Bm(ia,jb) = Bm(ia,jb) - 4d0*lambda*chi_B
|
||||||
|
|
||||||
|
chi_Ap = 0d0
|
||||||
|
chi_Am = 0d0
|
||||||
|
|
||||||
|
chi_Bp = 0d0
|
||||||
|
chi_Bm = 0d0
|
||||||
|
|
||||||
do kc=1,maxS
|
do kc=1,maxS
|
||||||
|
|
||||||
eps_A = + OmBSE - OmRPA(kc) - (eGW(a) - eGW(j))
|
eps_Ap = + OmBSE - OmRPA(kc) - (eGW(a) - eGW(j))
|
||||||
chi_A = chi_A + rho(i,j,kc)*rho(a,b,kc)*eps_A/(eps_A**2 + eta**2)
|
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*eps_Ap/(eps_Ap**2 + eta**2)
|
||||||
|
|
||||||
eps_A = + OmBSE - OmRPA(kc) - (eGW(b) - eGW(i))
|
eps_Ap = + OmBSE - OmRPA(kc) - (eGW(b) - eGW(i))
|
||||||
chi_A = chi_A + rho(i,j,kc)*rho(a,b,kc)*eps_A/(eps_A**2 + eta**2)
|
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*eps_Ap/(eps_Ap**2 + eta**2)
|
||||||
|
|
||||||
eps_B = + OmBSE - OmRPA(kc) - (eGW(a) - eGW(b))
|
eps_Am = - OmBSE - OmRPA(kc) - (eGW(a) - eGW(j))
|
||||||
chi_B = chi_B + rho(i,b,kc)*rho(a,j,kc)*eps_B/(eps_B**2 + eta**2)
|
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*eps_Am/(eps_Am**2 + eta**2)
|
||||||
|
|
||||||
eps_B = + OmBSE - OmRPA(kc) - (eGW(j) - eGW(i))
|
eps_Am = - OmBSE - OmRPA(kc) - (eGW(b) - eGW(i))
|
||||||
chi_B = chi_B + rho(i,b,kc)*rho(a,j,kc)*eps_B/(eps_B**2 + eta**2)
|
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*eps_Am/(eps_Am**2 + eta**2)
|
||||||
|
|
||||||
|
eps_Bp = + OmBSE - OmRPA(kc) - (eGW(a) - eGW(b))
|
||||||
|
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*eps_Bp/(eps_Bp**2 + eta**2)
|
||||||
|
|
||||||
|
eps_Bp = + OmBSE - OmRPA(kc) - (eGW(j) - eGW(i))
|
||||||
|
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*eps_Bp/(eps_Bp**2 + eta**2)
|
||||||
|
|
||||||
|
eps_Bm = - OmBSE - OmRPA(kc) - (eGW(a) - eGW(b))
|
||||||
|
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*eps_Bm/(eps_Bm**2 + eta**2)
|
||||||
|
|
||||||
|
eps_Bm = - OmBSE - OmRPA(kc) - (eGW(j) - eGW(i))
|
||||||
|
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*eps_Bm/(eps_Bm**2 + eta**2)
|
||||||
|
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
A_dyn(ia,jb) = A_dyn(ia,jb) - 2d0*lambda*chi_A
|
Ap(ia,jb) = Ap(ia,jb) - 2d0*lambda*chi_Ap
|
||||||
|
Am(ia,jb) = Am(ia,jb) - 2d0*lambda*chi_Am
|
||||||
|
|
||||||
B_dyn(ia,jb) = B_dyn(ia,jb) - 2d0*lambda*chi_B
|
Bp(ia,jb) = Bp(ia,jb) - 2d0*lambda*chi_Bp
|
||||||
|
Bm(ia,jb) = Bm(ia,jb) - 2d0*lambda*chi_Bm
|
||||||
|
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
subroutine Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,ZA,ZB)
|
subroutine Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho, &
|
||||||
|
ZAp,ZAm,ZBp,ZBm)
|
||||||
|
|
||||||
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
! Compute the dynamic part of the renormalization for the Bethe-Salpeter equation matrices
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
include 'parameters.h'
|
include 'parameters.h'
|
||||||
@ -18,19 +19,25 @@ subroutine Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,
|
|||||||
! Local variables
|
! Local variables
|
||||||
|
|
||||||
integer :: maxS
|
integer :: maxS
|
||||||
double precision :: chi_A,chi_B
|
double precision :: chi_Ap,chi_Bp,eps_Ap,eps_Bp
|
||||||
double precision :: eps_A,eps_B
|
double precision :: chi_Am,chi_Bm,eps_Am,eps_Bm
|
||||||
integer :: i,j,a,b,ia,jb,kc
|
integer :: i,j,a,b,ia,jb,kc
|
||||||
|
|
||||||
! Output variables
|
! Output variables
|
||||||
|
|
||||||
double precision,intent(out) :: ZA(nS,nS)
|
double precision,intent(out) :: ZAp(nS,nS)
|
||||||
double precision,intent(out) :: ZB(nS,nS)
|
double precision,intent(out) :: ZAm(nS,nS)
|
||||||
|
|
||||||
|
double precision,intent(out) :: ZBp(nS,nS)
|
||||||
|
double precision,intent(out) :: ZBm(nS,nS)
|
||||||
|
|
||||||
! Initialization
|
! Initialization
|
||||||
|
|
||||||
ZA(:,:) = 0d0
|
ZAp(:,:) = 0d0
|
||||||
ZB(:,:) = 0d0
|
ZAm(:,:) = 0d0
|
||||||
|
|
||||||
|
ZBp(:,:) = 0d0
|
||||||
|
ZBm(:,:) = 0d0
|
||||||
|
|
||||||
! Number of poles taken into account
|
! Number of poles taken into account
|
||||||
|
|
||||||
@ -47,28 +54,45 @@ subroutine Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,
|
|||||||
do b=nO+1,nBas-nR
|
do b=nO+1,nBas-nR
|
||||||
jb = jb + 1
|
jb = jb + 1
|
||||||
|
|
||||||
chi_A = 0d0
|
chi_Ap = 0d0
|
||||||
chi_B = 0d0
|
chi_Am = 0d0
|
||||||
|
|
||||||
|
chi_Bp = 0d0
|
||||||
|
chi_Bm = 0d0
|
||||||
|
|
||||||
do kc=1,maxS
|
do kc=1,maxS
|
||||||
|
|
||||||
eps_A = + OmBSE - OmRPA(kc) - (eGW(a) - eGW(j))
|
eps_Ap = + OmBSE - OmRPA(kc) - (eGW(a) - eGW(j))
|
||||||
chi_A = chi_A + rho(i,j,kc)*rho(a,b,kc)*(eps_A**2 - eta**2)/(eps_A**2 + eta**2)**2
|
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*(eps_Ap**2 - eta**2)/(eps_Ap**2 + eta**2)**2
|
||||||
|
|
||||||
eps_A = + OmBSE - OmRPA(kc) - (eGW(b) - eGW(i))
|
eps_Ap = + OmBSE - OmRPA(kc) - (eGW(b) - eGW(i))
|
||||||
chi_A = chi_A + rho(i,j,kc)*rho(a,b,kc)*(eps_A**2 - eta**2)/(eps_A**2 + eta**2)**2
|
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*(eps_Ap**2 - eta**2)/(eps_Ap**2 + eta**2)**2
|
||||||
|
|
||||||
eps_B = + OmBSE - OmRPA(kc) - (eGW(a) - eGW(b))
|
eps_Am = + OmBSE - OmRPA(kc) - (eGW(a) - eGW(j))
|
||||||
chi_B = chi_B + rho(i,b,kc)*rho(a,j,kc)*(eps_B**2 - eta**2)/(eps_B**2 + eta**2)**2
|
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*(eps_Am**2 - eta**2)/(eps_Am**2 + eta**2)**2
|
||||||
|
|
||||||
eps_B = + OmBSE - OmRPA(kc) - (eGW(j) - eGW(i))
|
eps_Am = + OmBSE - OmRPA(kc) - (eGW(b) - eGW(i))
|
||||||
chi_B = chi_B + rho(i,b,kc)*rho(a,j,kc)*(eps_B**2 - eta**2)/(eps_B**2 + eta**2)**2
|
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*(eps_Am**2 - eta**2)/(eps_Am**2 + eta**2)**2
|
||||||
|
|
||||||
|
eps_Bp = + OmBSE - OmRPA(kc) - (eGW(a) - eGW(b))
|
||||||
|
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*(eps_Bp**2 - eta**2)/(eps_Bp**2 + eta**2)**2
|
||||||
|
|
||||||
|
eps_Bp = + OmBSE - OmRPA(kc) - (eGW(j) - eGW(i))
|
||||||
|
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*(eps_Bp**2 - eta**2)/(eps_Bp**2 + eta**2)**2
|
||||||
|
|
||||||
|
eps_Bm = + OmBSE - OmRPA(kc) - (eGW(a) - eGW(b))
|
||||||
|
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*(eps_Bm**2 - eta**2)/(eps_Bm**2 + eta**2)**2
|
||||||
|
|
||||||
|
eps_Bm = + OmBSE - OmRPA(kc) - (eGW(j) - eGW(i))
|
||||||
|
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*(eps_Bm**2 - eta**2)/(eps_Bm**2 + eta**2)**2
|
||||||
|
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
ZA(ia,jb) = ZA(ia,jb) + 2d0*lambda*chi_A
|
ZAp(ia,jb) = ZAp(ia,jb) + 2d0*lambda*chi_Ap
|
||||||
|
ZAm(ia,jb) = ZAm(ia,jb) + 2d0*lambda*chi_Am
|
||||||
|
|
||||||
ZB(ia,jb) = ZB(ia,jb) + 2d0*lambda*chi_B
|
ZBp(ia,jb) = ZBp(ia,jb) + 2d0*lambda*chi_Bp
|
||||||
|
ZBm(ia,jb) = ZBm(ia,jb) + 2d0*lambda*chi_Bm
|
||||||
|
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
@ -36,17 +36,23 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,O
|
|||||||
double precision,allocatable :: X(:)
|
double precision,allocatable :: X(:)
|
||||||
double precision,allocatable :: Y(:)
|
double precision,allocatable :: Y(:)
|
||||||
|
|
||||||
double precision,allocatable :: A_dyn(:,:)
|
double precision,allocatable :: Ap_dyn(:,:)
|
||||||
double precision,allocatable :: ZA_dyn(:,:)
|
double precision,allocatable :: ZAp_dyn(:,:)
|
||||||
|
|
||||||
double precision,allocatable :: B_dyn(:,:)
|
double precision,allocatable :: Bp_dyn(:,:)
|
||||||
double precision,allocatable :: ZB_dyn(:,:)
|
double precision,allocatable :: ZBp_dyn(:,:)
|
||||||
|
|
||||||
|
double precision,allocatable :: Am_dyn(:,:)
|
||||||
|
double precision,allocatable :: ZAm_dyn(:,:)
|
||||||
|
|
||||||
|
double precision,allocatable :: Bm_dyn(:,:)
|
||||||
|
double precision,allocatable :: ZBm_dyn(:,:)
|
||||||
|
|
||||||
! Memory allocation
|
! Memory allocation
|
||||||
|
|
||||||
allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),A_dyn(nS,nS),ZA_dyn(nS,nS))
|
allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),Ap_dyn(nS,nS),ZAp_dyn(nS,nS))
|
||||||
|
|
||||||
if(.not.dTDA) allocate(B_dyn(nS,nS),ZB_dyn(nS,nS))
|
if(.not.dTDA) allocate(Am_dyn(nS,nS),ZAm_dyn(nS,nS),Bp_dyn(nS,nS),ZBp_dyn(nS,nS),Bm_dyn(nS,nS),ZBm_dyn(nS,nS))
|
||||||
|
|
||||||
! Print main components of transition vectors
|
! Print main components of transition vectors
|
||||||
|
|
||||||
@ -74,37 +80,37 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,O
|
|||||||
! Resonant part of the BSE correction for dynamical TDA
|
! Resonant part of the BSE correction for dynamical TDA
|
||||||
|
|
||||||
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
||||||
A_dyn(:,:))
|
Ap_dyn(:,:))
|
||||||
|
|
||||||
! Renormalization factor of the resonant parts for dynamical TDA
|
! Renormalization factor of the resonant parts for dynamical TDA
|
||||||
|
|
||||||
call Bethe_Salpeter_ZA_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
call Bethe_Salpeter_ZA_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
||||||
ZA_dyn(:,:))
|
ZAp_dyn(:,:))
|
||||||
|
|
||||||
ZDyn(ia) = dot_product(X(:),matmul(ZA_dyn(:,:),X(:)))
|
ZDyn(ia) = dot_product(X(:),matmul(ZAp_dyn(:,:),X(:)))
|
||||||
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:)))
|
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:)))
|
||||||
|
|
||||||
else
|
else
|
||||||
|
|
||||||
! Resonant and anti-resonant part of the BSE correction
|
! Resonant and anti-resonant part of the BSE correction
|
||||||
|
|
||||||
call Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
call Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
||||||
A_dyn(:,:),B_dyn(:,:))
|
Ap_dyn(:,:),Am_dyn(:,:),Bp_dyn(:,:),Bm_dyn(:,:))
|
||||||
|
|
||||||
! Renormalization factor of the resonant and anti-resonant parts
|
! Renormalization factor of the resonant and anti-resonant parts
|
||||||
|
|
||||||
call Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
call Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
||||||
ZA_dyn(:,:),ZB_dyn(:,:))
|
ZAp_dyn(:,:),ZAm_dyn(:,:),ZBp_dyn(:,:),ZBm_dyn(:,:))
|
||||||
|
|
||||||
ZDyn(ia) = dot_product(X(:),matmul(ZA_dyn(:,:),X(:))) &
|
ZDyn(ia) = dot_product(X(:),matmul(ZAp_dyn(:,:),X(:))) &
|
||||||
- dot_product(Y(:),matmul(ZA_dyn(:,:),Y(:))) &
|
- dot_product(Y(:),matmul(ZAm_dyn(:,:),Y(:))) &
|
||||||
+ dot_product(X(:),matmul(ZB_dyn(:,:),Y(:))) &
|
+ dot_product(X(:),matmul(ZBp_dyn(:,:),Y(:))) &
|
||||||
- dot_product(Y(:),matmul(ZB_dyn(:,:),X(:)))
|
- dot_product(Y(:),matmul(ZBm_dyn(:,:),X(:)))
|
||||||
|
|
||||||
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:))) &
|
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:))) &
|
||||||
- dot_product(Y(:),matmul(A_dyn(:,:),Y(:))) &
|
- dot_product(Y(:),matmul(Am_dyn(:,:),Y(:))) &
|
||||||
+ dot_product(X(:),matmul(B_dyn(:,:),Y(:))) &
|
+ dot_product(X(:),matmul(Bp_dyn(:,:),Y(:))) &
|
||||||
- dot_product(Y(:),matmul(B_dyn(:,:),X(:)))
|
- dot_product(Y(:),matmul(Bm_dyn(:,:),X(:)))
|
||||||
|
|
||||||
end if
|
end if
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user